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ABSTRACT 
Error function occurs frequently in probability, statistics, physics and many engineering problems like heat 

conduction problems, vibrating beams problems etc. In this article, we find the Elzaki transform of error function. In 

application section, some numerical applications of Elzaki transform of error function for evaluating the improper 

integral, which contain error function, are given. 
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I. INTRODUCTION 
 

Integral transforms play a significant role for solving many advance problems of science and engineering such as 

radioactive decay problems, heat conduction problems, problem of motion of a particle under gravity, vibration 

problems of beam, electric circuit problems and population growth problems. Many researchers applied different 

integral transforms (Laplace transform [1-2], Fourier transform [2], Mahgoub transform [3-11, 41-43], Kamal 

transform [12-18, 44], Aboodh transform [19-24, 45-49], Mohand transform [25-28, 50-52],  Elzaki transform [34-

36, 53-55], Shehu transform [37-38, 56] and Sumudu transform [39, 57-58]) and solved differential equations, delay 

differential equations, partial differential equations, integral equations, integro-differential equations and partial 

integro-differential equations. Sudhanshu et al. [29-33, 40] discussed the comparative study of Mohand and other 

transforms (Laplace transform, Kamal transform, Elzaki transform, Aboodh transform, Sumudu transform and 

Mahgoub transform). 

 

The solutions of many advanced engineering problems like Fick’s second law, heat and mass transfer problems, 

vibrating beams problems contains error and complementary error function. When we solve these types of problems 

by using any integral transform then it is very necessary to knowing the integral transform of error function.  

Mathematically error and complimentary error functions are defined by [59-64] 

𝑒𝑟𝑓(𝑥) =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0
                                                                                                                                                (1) 

 

and  

𝑒𝑟𝑓𝑐(𝑥) =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
∞

𝑥
                                                                                                                                                                (2) 

 

In 2011, Elzaki [53] defined a new integral transform “Elzaki transform’’ of the function 𝐹(𝑡) for 𝑡 ≥ 0 as  

𝐸{𝐹(𝑡)} = 𝜈 ∫ 𝐹(𝑡)𝑒−𝑡/𝑣𝑑𝑡
∞

0
= 𝑇(𝑣), 𝑘1 ≤ 𝑣 ≤ 𝑘2                                                                                                   (3) 

 

where operator 𝐸 is called the Elzaki transform operator. 

 

The goal of the present article is to determine Elzaki transform of error function and explain the advantage of Elzaki 

transform of error function for evaluating the improper integral, which contain error function. 

 

II. SOME USEFUL PROPERTIES OF ELZAKI TRANSFORM 
 

2.1 Linearity property [31] 

If Elzaki transform of functions F1(t) and F2(t)areT1(v)and T2(v) respectively then Elzaki transform of  
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[aF1(t) + bF2(t)] is given by [aT1(v) + bT2(v)], where a, b are arbitrary constants. 

 

Proof: By the definition of Elzaki transform, we have  

E{F(t)} = ν ∫ F(t)e−t/vdt
∞

0

 

⇒ E{aF1(t) + bF2(t)} = v ∫ [aF1(t) + bF2(t)]e−t/vdt
∞

0

 

⇒ E{aF1(t) + bF2(t)} = av ∫ F1(t)e−t/vdt
∞

0

+ bv ∫ F2(t)e−t/vdt
∞

0

 

⇒ E{aF1(t) + bF2(t)} = aE{F1(t)} + bE{F2(t)} 

⇒ E{aF1(t) + bF2(t)} = aT1(v) + bT2(v),  
where a, b are arbitrary constants. 

 

2.2 Change of scale property 

If Elzaki transform of function F(t) is T(v) then Elzaki transform of function F(at)is given by 
1

a2 T(av). 

 

Proof: By the definition of Elzaki transform, we have  

E{F(at)} = v ∫ F(at)e−t/vdt
∞

0
                                                                                                                                  (4) 

Put at = p ⇒ adt = dp in equation (4), we have  

E{F(at)} =
v

a
∫ F(p)e

−p

av dp
∞

0

 

⇒ E{F(at)} =
1

a2
. av ∫ F(p)e

−p

av dp
∞

0

 

⇒ E{F(at)} =
1

a2 T(av)  

 

2.3 Shifting property 

If Elzaki transform of function F(t) is T(v)  then Elzaki transform of function eatF(t)is given by  

(1 − av)T (
v

(1 − av)
). 

 Proof: By the definition of Elzaki transform, we have  

E{eatF(t)} = v ∫ eatF(t)e−t/vdt
∞

0

= v ∫ F(t)e−(
1

v
−a)tdt

∞

0

 

= v ∫ F(t)e
−[

t

(v
(1−av)⁄ )

]

dt
∞

0

 

=
v

(1 − av)
(1 − av) ∫ F(t)e

−[
t

(v
(1−av)⁄ )

]

dt
∞

0

= (1 − av)T (
v

(1 − av)
) 

 

2.4 Elzaki transform of the derivatives of the function 𝐅(𝐭) [31, 35-36] 

If E{F(t)} = T(v) then  

a) E{F′(t)} =
1

v
T(v) − vF(0) 

b) E{F′′(t)} =
1

v2 T(v) − F(0) − vF′(0) 

 

 

2.5 Elzaki transform of integral of a function 𝐅(𝐭) 

If E{F(t)} = T(v) then E {∫ F(t)dt
t

0
} = vT(v) 

 

Proof: Let G(t) = ∫ F(t)dt
t

0
. Then G′(t) = F(t)and G(0) = 0. 

Now by the property of Elzaki transform of the derivative of function, we have 
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E{G′(t)} =
1

v
E{G(t)} − vG(0) =

1

v
E{G(t)} 

⇒ E{G(t)} = vE{G′(t)} = v E{F(t)} 

⇒ E{G(t)} = vT(v)  

⇒ E {∫ F(t)dt
t

0
} = vT(v)  

 

2.6 Elzaki transform of function 𝐭𝐅(𝐭) 

If E{F(t)} = T(v) then E{tF(t)} = [v2 d

dv
− v] T(v) 

 

Proof: By the definition of Elzaki transform, we have  

𝐸{𝐹(𝑡)} = 𝑣 ∫ 𝐹(𝑡)𝑒−𝑡/𝑣𝑑𝑡
∞

0

= 𝑇(𝑣) 

⇒
𝑑

𝑑𝑣
𝑇(𝑣) = ∫ 𝐹(𝑡)𝑒−𝑡/𝑣𝑑𝑡

∞

0

+ 𝑣 ∫ (−𝑡)
(−1)

𝑣2
𝐹(𝑡)𝑒−𝑡/𝑣𝑑𝑡

∞

0

 

⇒
𝑑

𝑑𝑣
𝑇(𝑣) =

1

𝑣
. 𝑣 ∫ 𝐹(t)e−t/vdt

∞

0

+
1

v2
. v ∫ tF(t)e−t/vdt

∞

0

 

⇒
d

dv
T(v) =

1

v
T(v) +

1

v2
E{tF(t)} 

⇒ E{tF(t)} = v2 [
d

dv
−

1

v
] T(v) = [v2

d

dv
− v] T(v) 

 

2.7 Convolution theorem for Elzaki transforms [31, 34] 

If Elzaki transform of functions F1(t) and F2(t)areT1(v)and T2(v) respectively then Elzaki transform of their 

convolution F1(t) ∗ F2(t) is given by  

E{F1(t) ∗ F2(t)} =
1

v
E{F1(t)}E{F2(t)} 

⇒ E{F1(t) ∗ F2(t)} =
1

v
T1(v)T2(v), where F1(t) ∗ F2(t) is defined by 

 F1(t) ∗ F2(t) = ∫ F1(t − x)
t

0
F2(x)dx = ∫ F1(x)

t

0
F2(t − x)dx 

 

III. ELZAKI TRANSFORM OF FREQUENTLY ENCOUNTERED FUNCTIONS [31, 34-36] 

 
Table: 1 

S.N. 𝐹(𝑡) 𝐸{𝐹(𝑡)} = 𝑇(𝑣) 

1. 1 𝑣2 

2. 𝑡 𝑣3 

3. 𝑡2 2! 𝑣4 

4. 𝑡𝑛, 𝑛 ∈ 𝑁 𝑛! 𝑣𝑛+2 

5. 𝑡𝑛, 𝑛 > −1 Γ(𝑛 + 1)𝑣𝑛+2 

6. 𝑒𝑎𝑡 𝑣2

1 − 𝑎𝑣
 

7. 𝑠𝑖𝑛𝑎𝑡 𝑎𝑣3

1 + 𝑎2𝑣2
 

8. 𝑐𝑜𝑠𝑎𝑡 𝑣2

1 + 𝑎2𝑣2
 

9. 𝑠𝑖𝑛ℎ𝑎𝑡 𝑎𝑣3

1 − 𝑎2𝑣2
 

10. 𝑐𝑜𝑠ℎ𝑎𝑡 𝑣2

1 − 𝑎2𝑣2
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IV. SOME IMPORTANT PROPERTIES OF ERROR AND COMPLEMENTARY ERROR 

FUNCTIONS 
 

4.1 The sum of error and complementary error functions is unity 

erf(x) + erfc(f) = 1 

Proof: we have ∫ e−t2
dt

∞

0
=

√π

2
 

⇒
2

√π
 ∫ e−t2

dt
∞

0

= 1 

⇒
2

√π
∫ e−t2

dt
x

0

+
2

√π
∫ e−t2

dt
∞

x

= 1 

⇒ erf(x) + erfc(f) = 1 

 

4.2 Error function is an odd function: 

erf(−x) = − erf(x) 

 

4.3 The value of error function at 𝐱 = 𝟎 is 𝟎: 

erf(0) = 0. 

 

4.4 The value of complementary error function at 𝐱 = 𝟎 is 𝟏: 

erfc(0) = 1. 

 

4.5 The domain of error and complementary error functions is (−∞, ∞). 
 

4.6 𝐞𝐫𝐟(𝐱) → 𝟏𝐚𝐬 𝐱 → ∞. 

 

4.7 𝐞𝐫𝐟𝐜(𝐱) → 𝟎𝐚𝐬 𝐱 → ∞. 

 

4.8 The value of error functions 𝐞𝐫𝐟(𝐱) for different values of 𝐱 [60] 

 
Table: 2 

S.N. 𝑥 𝑒𝑟𝑓(𝑥) 

1. 0.00 0.00000 

2. 0.02 0.02256 

3. 0.04 0.04511 

4. 0.06 0.06762 

5. 0.08 0.09008 

6. 0.10 0.11246 

7. 0.12 0.13476 

8. 0.14 0.15695 

9. 0.16 0.17901 

10. 0.18 0.20094 

11. 0.20 0.22270 

 

V. ELZAKI TRANSFORM OF ERROR FUNCTION 
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By equation (1), we have  

𝑒𝑟𝑓(√𝑡) =
2

√𝜋
∫ 𝑒−𝑥2

𝑑𝑥
√𝑡

0

 

=
2

√𝜋
∫ [1 −

𝑥2

1!
+

𝑥4

2!
−

𝑥6

3!
+ ⋯ … ] 𝑑𝑥

√𝑡

0

 

=
2

√𝜋
[𝑥 −

𝑥3

3.1!
+

𝑥5

5.2!
−

𝑥7

7.3!
+ ⋯ … ]

√𝑡

0
 

=
2

√𝜋
[𝑡

1

2 −
𝑡

3
2

3.1!
+

𝑡
5
2

5.2!
−

𝑡
7
2

7.3!
+. . ]                                                                                                                                   (5) 

 

Applying Elzaki transform both sides on equation (5), we get 

𝐸{𝑒𝑟𝑓(√𝑡)} =
2

√𝜋
𝐸 {[𝑡1/2 −

𝑡3/2

3.1!
+

𝑡5/2

5.2!
−

𝑡7/2

7.3!
+. . ]}                                                                                                (6) 

 

Applying the linearity property of Elzaki transform on equation (6), we get 

𝐸{𝑒𝑟𝑓(√𝑡)} =
2

√𝜋
[Γ(3/2)𝑣5/2 −

Γ(5/2)

3.1!
𝑣7/2 +

Γ(7/2)

5.2!
𝑣9/2 −

Γ(9/2)

7.3!
𝑣11/2 + ⋯ ] 

=
2

√𝜋
Γ(3/2)𝑣5/2 [1 −

1

2
𝑣 +

1.3

2.4
𝑣2 −

1.3.5

2.4.6
𝑣3 + ⋯ … … ] 

= 𝑣5/2(1 + 𝑣)−1/2 =
𝑣5/2

√(1+𝑣)
                                                                                                                                     (7) 

 

VI. ELZAKI TRANSFORM OF COMPLEMENTARY ERROR FUNCTION 
 

We have,  𝑒𝑟𝑓(𝑥) + 𝑒𝑟𝑓𝑐(𝑓) = 1 

⇒ 𝑒𝑟𝑓𝑐(𝑓) = 1 − 𝑒𝑟𝑓(𝑥)                                                                                                                                        (8) 

 

Applying Elzaki transform both sides on equation(8), we have  

𝐸{𝑒𝑟𝑓𝑐(𝑓)} = 𝐸{1 − 𝑒𝑟𝑓(𝑥)}                                                                                                                                 (9) 

 

Applying the linearity property of Elzaki transform on equation(9), we get 

𝐸{𝑒𝑟𝑓𝑐(𝑓)} = 𝐸{1} − 𝐸{𝑒𝑟𝑓(𝑥)} 

⇒ 𝐸{𝑒𝑟𝑓𝑐(𝑓)} = 𝑣2 −
𝑣5/2

√(1 + 𝑣)
 

⇒𝐸{𝑒𝑟𝑓𝑐(𝑓)} = [
𝑣2√(1+𝑣)−𝑣5/2

√(1+𝑣)
]                                                                                                                                             (10) 

 
VII. APPLICATIONS 
 

In this section, some applications are given in order to explain the advantage of Elzaki transform of error function 

for evaluating the improper integral, which contain error function. 

 

7.1 Evaluate the improper integral I = ∫ e−t∞

0
erf(√t) dt. 

We have E{erf(√t)} = v ∫ erf(√t) e−t/vdt
∞

0
=

v5/2

√(1+v)
                                                                                      (11) 

 

Taking v → 1 in above equation, we have 

I = ∫ e−t
∞

0

erf(√t) dt =
1

√2
 

 

7.2 Evaluate the improper integral I = ∫ te−3t∞

0
erf(√t) dt. 
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We have E{erf(√t)} =
v5/2

√(1+v)
 

⇒ E{t erf(√t)} = [v2
d

dv
− v]

v5/2

√(1 + v)
 

=
v2(5v3/2+4v5/2)

2(1+v)
3
2

−
v7/2

√(1+v)
                                                                                                                                       (12) 

 

By the definition of Elzaki transform, we have 

E{t erf(√t)} = v ∫ t erf(√t) e−t/vdt
∞

0
                                                                                                               (13) 

 

Now by equations (12) and (13), we get 

v ∫ t erf(√t) e−t/vdt
∞

0

=
v2(5v3/2 + 4v5/2)

2(1 + v)
3

2

−
v7/2

√(1 + v)
 

Taking v →
1

3
 in above equation, we have 

1

3
∫ te−3t

∞

0

erf(√t) dt =
11

432
 

I = ∫ te−3t
∞

0

erf(√t) dt =
11

144
 

 

7.3 Evaluate the improper integral I = ∫ e−(
1

v
−2)t∞

0
erf(√t) dt. 

We have E{erf(√t)} =
v5/2

√(1+v)
 

Now by shifting theorem of Elzaki transform, we have  

E{e2t erf(√t)} = (1 − 2v)
[v

(1 − 2v)⁄ ]
5/2

√1 +
v

(1−2v)

 

⇒ E{e2t erf(√t)} =
v5/2

(1−2v)√(1−v)
                                                                                                                           (14) 

By the definition of Elzaki transform, we have 

𝐸{𝑒2𝑡 𝑒𝑟𝑓(√𝑡)} = 𝑣 ∫ 𝑒2𝑡 𝑒𝑟𝑓(√𝑡) 𝑒−𝑡/𝑣𝑑𝑡
∞

0

 

⇒ 𝐸{𝑒2𝑡 𝑒𝑟𝑓(√𝑡)} = 𝑣 ∫ 𝑒−(
1

𝑣
−2)𝑡∞

0
𝑒𝑟𝑓(√𝑡) 𝑑𝑡                                                                                                     (15) 

 

Now by equations (14) and (15), we get 

𝑣 ∫ 𝑒−(
1

𝑣
−2)𝑡

∞

0

𝑒𝑟𝑓(√𝑡) 𝑑𝑡 =
𝑣5/2

(1 − 2𝑣)√(1 − 𝑣)
 

⇒ 𝐼 = ∫ 𝑒−(
1

𝑣
−2)𝑡

∞

0

𝑒𝑟𝑓(√𝑡) 𝑑𝑡 =
𝑣3/2

(1 − 2𝑣)√(1 − 𝑣)
. 

 

7.4 Evaluate the improper integral I = ∫ e−t∞

0
{∫ erf(√u)du

t

0
} dt. 

We have E{erf(√t)} =
v5/2

√(1+v)
 

Now by the property of Elzaki transform of integral of a function, we have  

E {∫ erf(√u)du
t

0

} = v [
v5/2

√(1 + v)
] 

⇒ E {∫ erf(√u)du
t

0
} =

v7/2

√(1+v)
                                                                                                                                (16) 

 

By the definition of Elzaki transform, we have 
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E {∫ erf(√u)du
t

0
} = v ∫ e−t/v∞

0
{∫ erf(√u)du

t

0
} dt                                                                                            (17) 

 

Now by equations (16) and (17), we get 

v ∫ e−t/v
∞

0

{∫ erf(√u)du
t

0

} dt =
v7/2

√(1 + v)
 

Taking v → 1 in above equation, we have 

I = ∫ e−t
∞

0

{∫ erf(√u)du
t

0

} dt =
1

√2
. 

7.5 Evaluate the improper integral I = ∫ e−2t∞

0
[

d

dt
erf(2√t)] dt. 

We have E{erf(√t)} =
v5/2

√(1+v)
 

Now by change of scale property of Elzaki transform, we have 

E{erf(2√t)} =
1

16
[

(4v)5/2

√(1 + 4v)
] 

⇒ E{erf(2√t)} =
2(v)5/2

√(1 + 4v)
 

Now using the property of Elzaki transform of derivative of a function, we have  

E {
d

dt
erf(2√t)} =

1

v
. [

2(v)5/2

√(1 + 4v)
] − v. 0 

⇒ E {
d

dt
erf(2√t)} =

2(v)3/2

√(1+4v)
                                                                                                                                  (18) 

 

By the definition of Elzaki transform, we have 

E {
d

dt
erf(2√t)} = v ∫ e−t/v∞

0
{

d

dt
erf(2√t)} dt                                                                                                    (19) 

 

Now by equations (18) and (19), we get 

𝑣 ∫ 𝑒−𝑡/𝑣
∞

0

{
𝑑

𝑑𝑡
𝑒𝑟𝑓(2√𝑡)} 𝑑𝑡 =

2(𝑣)3/2

√(1 + 4𝑣)
 

 

Taking 𝑣 →
1

2
 in above equation, we have 

1

2
∫ 𝑒−2𝑡

∞

0

{
𝑑

𝑑𝑡
𝑒𝑟𝑓(2√𝑡)} 𝑑𝑡 =

1

√6
 

⇒ 𝐼 = ∫ 𝑒−2𝑡
∞

0

{
𝑑

𝑑𝑡
𝑒𝑟𝑓(2√𝑡)} 𝑑𝑡 =

2

√(6)
 

⇒ I = ∫ e−2t
∞

0

{
d

dt
erf(2√t)} dt = √

2

3
. 

 

7.6 Evaluate the improper integral I = ∫ e−5t[erf √t ∗ erf√t]
∞

0
dt. 

By convolution theorem of Elzaki transform, we have  

E{erf √t ∗ erf√t} =
1

v
E{erf(√t)}E{erf(√t)} 

=
1

v
[

v5/2

√(1+v)
] [

v5/2

√(1+v)
] =

v4

(1+v)
                                                                                                                                     (20) 

 

Now by the definition of Elzaki transform, we have 

E{erf √t ∗ erf√t} = v ∫ e−t/v∞

0
{erf √t ∗ erf√t}dt                                                                                            (21) 

 

Now by equations (20) and (21), we get 
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v ∫ e−t/v∞

0
{erf √t ∗ erf√t}dt =

v4

(1+v)
                                                                                                                   (22) 

 

Taking v →
1

5
 in above equation, we have 

1

5
∫ e−5t

∞

0

{erf √t ∗ erf√t}dt =
1

750
 

⇒ I = ∫ e−5t
∞

0

{erf √t ∗ erf√t}dt =
1

150
. 

 

VIII. CONCLUSIONS 
 

In this article, we have successfully discussed the Elzaki transform of error function. The given numerical 

applications in application section show the advantage of Elzaki transform of error function for evaluating the 

improper integral, which contain error function. 
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