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ABSTRACT

Transverse relaxation time is important in magnetic resonance imaging (MRI). It is important to construct new
models to find new parameters that control imaging quality. In this work Schrodinger Equation in energy space for
two level systems was used to find transverse relaxation time. By suggesting sine and cosine beside complex
solutions a useful expression for transverse relaxation time was found. When electric interaction dominate, i.e. for
dielectric materials the transverse relaxation time depends on the electric dipole moment. However the magnetic
materials having magnetic spin and magnetic dipole moment, it depends on the internal field as well as spin
quantum number.

Key Words: transverse relaxation time, energy wave function, electric dipole moment, internal magnetic field, spins
quantum number.

l. INTRODUCTION

Magnetic resonance imaging (MRI) is one of the most popular techniques which is widely used in medical
diagnostic .1t gives good image quality since the image contrast depends on three parameters. These parameters are
longitudinal, transverse relaxation time beside the so called spin density [1,2].The understanding of these parameters
needs understanding the so called nuclear magnetic resonance. In this process the application of external magnetic
field splits protons energy levels into two sub levels according to their spin orientation [3]. The protons having
magnetic spin opposite to the external field occupies the higher splatter energy level. The protons with magnetic
spin moment pointing in the direction of the external magnetic field occupy the lower spited level [4]. The
differences between the two levels are proportional to the strength of the external magnetic field. The organ image is
formed by applying microwave of specific frequency, then apply sinusoidal variable magnetic field which change
the energy different between the two splitter levels. When the energy difference equals the microwave photon
energy resonance occurs and the photons are absorbed. The absorption rate normal tissue is different from that
abnormal one [5, 6].In conventional (MRI) theories the image contrast depends on longitudinal, transverse
relaxation time as well as the density of hydrogen atoms. These also depend on material properties as well as
external and internal magnetic field. To improve image quality one need new models and trend this can discover
new mechanism that control image contrast, sensitivity and detection limit. Different attempts were made so as to
explain MRI on new basis [7, 8, and 9], but one needs more new trends are required. This is the aims of this work is
to use the Schrodinger Equation in the momentum space to find useful expression for relaxation time.

Generalized Energy Wave Function for Tow Level System

Consider the time dependent Schrédinger equation for tow level system
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inCi =2 e HyC, ®
=1

Where Ck (t) stands for the wave function in the energy space.
The equations for k=1 and k=2 are given respectively to be

inC: = H,,.C, +e"HLC, @
inC, =e#H.C, +H.,C, 3)
Where

Wy = W) — W, Wy =W, — W 4)

Differentiating (2) yields:

inCi = H/, Ci+im,e'**H,,C, +e'**H,,C, ©)
Multiplying (5) by inyields

-’ Ci= inH;; Ci- lelzeiwmt H.,C, + ineiwlztz Hp, Cz (6)

Substituting (3) in (6)

- le Cl =inH;, Cl_ nwlzeiwlzr H.,C, + e' H, [eiw21t H5C, +H3%C,]
- n2 C, =inH;,C,— nwlzeiwlzr H,C, + H,H,C, + e H,H2%C, (7)
To eliminate C2 from (7) one can utilize eq. (2) to get

e'”*"H},C, = incl_ HLC
Using this equation in equation (7) yields:

-1’ cl =inH,, Cu- ‘o, C1+nw12H1,1C1 +HLHLC +inHy, Ci- HiH2Cy
_nz Ci= in[Hh —Nw, + Héz]Cl"' [nwlelrl +H,H) —HHJ, ]C1(8)
_le Ci= in[H{1 +Hy, _nwlz]C1+[H1'2H£1 —H{ H, +na)12H1’1]C1(9)

Now let
2 -
a=-n’,b= In[Hl'l +Hp _Tla)lz]
C=Hp,H,; —HiH, +nepHY, (10)
The equation (9) can be reduced to the form:
a&—p&+CC, (12)
The parameters a, b and ¢ are constant in time. Thus one can try the solution of the form:
C, = Ae sin wr (12)

Ci=-BAe " sinwr+whe™” coswr
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C,= f°Ae" sin wr — 2 A" cos wr — o Ae ™" cos wr — w’ Ae™” sin wr =

(B* — w®)Ae ™" sin wr — 2 fole ™ cos wr
Sub. (12) and (13) in (11) yields:

(13)

a(f’ —w*)sinwr —2afwcos wr = -bBsinwr +bwcos ot + C sin wt
Equating the coefficients at sin @7 and cos @t on both sides, one gets:

a(f? -w’)=-bp+C (14)
Thus:
2afw=bw (15)
Hence (15) and (10) yields:
-b b
== (16)
p 2a 20’
To find the frequency @ equation (16) is inserted in equation (14) to get
ab? +b?
4—2 - z = 5 +C
a o4 (17)
—aw’ = +C
4a
Utilizing the expression for a in equation (10) yields:
, -b?> C
0" = +— (18)
4a -—a
»_C_b°
nZ 4n4
C b? l 3
w = = T :—2 4T]2C —bz
N 4n’ 2n
The probability that state E, is occupied is given by
C,|* =C,C; = A% sin at (19)

The energy level is empty at t = o since sin0=0
Its occupation is a maximum when:
sinwr =1

V4
T =—
2

e Fo 7 1
20 Anf  4f

Equation (11) can be solved by suggesting the solution

C, = Agl/Hen (21)
Therefore:

Ci=+(-f+io)C, &=+(-f+iw)’C, (22)
Inserting (21) and (22) in (11) yields:
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a(-f+iw)* =b(-B+iw)+C

(23)
a(B% — @’ - 2Bai) = -bpB +C + abi
Equating real and imaginary parts yields:
a(p>-w’)=-bp+C (24)
—2afw=ab (25)
Hence an equation (10) and (14) reads:
b b
=——=— (26)
2a 2n

n® 4n'  4n'
Thus the frequency is given by:

a)zzi\/4nzc—b2 27)
n

The probability of occupation of the energy level E; can thus be given according to equation (21) to be

C[°=C,~C; = A% (28)
The normalization condition for C, is given to be
[lcfdt=1

A2 [ Lt
%[ezﬁ]o =1

I
-ﬁ[e —ev]=1

A2
—=1 A=,2
25 B (29)

There for to equation (21)

o Co=2pe ' (30)
The occupation probability for
E, isthus
2 _
C.[" =24 (31)

Itisclear thatatt=0
The probability is maximum

|C|2 = 2 = max imum (32)
But the probability is near to zero or very small when:
1
T=— (33)
2p

The term /3 can be found with the aid of equations (26) and (10) to be
b in[Hlll"'H;z_nwlz]
ﬁ - 2 2 - 2 2
n n

(34)

Volume 14, No 4, 2023 108 https://aaseresearch.com/



Advances in Aeronautical Science and Engineering
ISSN: 1674-8190

The Hamiltonian part of the perturbing internal field B; which interact with spin S is given

H'=-°s_Bi (35)
2m
Where
. o Jnev  u.ne
i = A _ ANOV _ fNEp @)
2r 2r 2ma
M. = magnetic permeability in free space, i= current.
The corresponding proton is given by:
. . Ne 6 .Nne
i— AV _ X (37)
2ma i 2ma
Where:
r=a=atomic radius, ) momentum operator using Heisenberg picture:
- . dx 5 oA
Imp = mm% = m[X, H] (38)
Hence
5 A A
e°S n(xX,H
H r_ z IUO [ J (39)
2ma in
2
, o e°UNS, ¢ [vir v
i = [oHudx == [, [ %A - A% b o
, _€ ﬂons
™ = Zman {I XE, u, dx Iu H xu dx}
€ ns »
==t Iu X U, dx J'Hu KU, dx
4mani
e ns,
il 3 [(E -E )Iu Xu dx]
4man|
. e’u.nS m e’ u.ns,
mn Tania)nm/umn = anmﬂmn (40)
Where
En - Em =Nw, —No, =N&,,
mn = J-Um )’ZUndX (42)
And the hermilicity of H requires
Iﬁwﬁﬁundx:jﬁumundx= EmJ.Umf(undx: Enn (42)
But according to modified Schrodinger equation [18]
k io
= - ‘0= )Y, (43)
JUpEpE,  28.8,
Where:

K=wave number, &. =electric permissibility in free space, & = relative electric permissibility, 5 = Boher
magnetron
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M, = relative magnetic permittivity

X i X
o o g
Ny 2e.6,  (44)

0=Cw —liy o

With
1 X
Cr = X = —— (45)
UL E, 2.8,
C,=vlc
There for: v=medium speed of light, c= free space speed of light
Thus
En = Crnwn —IXna,
NOyy = C MOy, — izrna)nm (46)
Thus according to equations (40) and one gets
2
H! — € HUNS, Wty _ 0
2 4mai
Ny, =CNwy, —iy ey, (47)

X =relative magnetic susceptibility

Sub. (47) in (10) yields:

b=ic @, + '@y, (48)
In new of eq. (48)

Relation (26) reads:

.C. o y o)
=i r“v12 A 12 (49)
p 2 2
Utilizing equation (10) together with (18), (40) one gets
C=Hp,H; —HH +no,Hj,

C= Hl’ZHél

) 2
e?u.ns,

:{ 4main} (M@, 11, ) (M@, 125,)

[e?u.ns,

= 4 :| (,Ulz/"ﬂ)[(cr —iy)(noy,)(c, - ilr)na)zl]
| 4man

e?u.ns, .
=__ aman } (ﬂlzﬂzl)(nza)ua)ﬂ)[crz _CrZZrz _lercr]

(50)

One can simplify the above expression by bearing in mind that:

1 1 1
C-= V= =
N HEs \/E NYTR-BN YRS
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ue >1 (51)
\/ursr v
na
A= [rev.18] (52)
27C L@
n~1, a~=10",C=%10°, u~10, w~10° (53)
10°° .
~ ~107° , & ~10 12, g ~1
£ =108 %107 x10° ’
2
c
n, =Radio wave frequency refractive frequency, o = @ n,,n,= b HE
c n,
fo=E (5)
2.8,
107
~_ o ~ 500
A% %102 1 o
When C; >y,
(47),(48),(49),(50) and (27) can be simplified to get:
b=ic,n’ @,
2 2 55)
e u.ns (
C= _[ 4manz } [/112/‘21 ][11260126021 :k:rz
_ic,a,
p 2
e’ u.ns ’ o’
—_ ° z + _12
w=C, { 4man } Hop oy Wy Wy 4
C e?u.ns ’
o= j 0)122 - {W} Hop My Dy 0y
i [ezﬂons ]2 Ha oy Oy, @y — @, =7
W=\ z (56)
man
Yield:
7icrw12rt
C,=Ae e 2 (57)

Taking the real part of C yields:
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C, = Ae 7! cos(clet)
! 2

_ C .ot
C12 — Aze 270ot COSZ ( r 212 )

(58)

Thus the transverse relaxation time is given from the expositional term as:
1 man

T2:2 T 2 2 2,22, 2 (5%)
Ve = \/(e HNS, ) fy py 0,0, — MA@
C,a,T, 7z T__F 7
2 2 ? cw, Cwo

This mean:

1
T, = (59)

(0]
Where:

no=E, -E, =n(o, -»,) =no,
If interaction potential is considered as a number where:

e
H'=—S,B, 60
2m “ (©0)
S, = spin momentum in z- axis
! _ o 1, _ e —
H.. _IumH undr_ﬂsZ Bijumundr

H' =% s BS (61)
2m

Z =Y nm

Two level system n, m=1.2

4 14 e
H11 = H22 :_SZB'

2m ' (62)
H,=H; =0

Thus according to equation (10)

a=-n’ b:in[%SzBl _nw12:|

—-e’s B enS
C= L+ LBw 63
4m? 2m Y 9

Thus according to equations (26) and (27), are gets

ineS, B, _ in’w,

p= ,
-Zmn 2n (64)
1| €
=—|=5,B, —nw
ﬂ 21’]|:m z ™ Tl 12j|
Hence
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€ 2
_E m?2 m +(EszBi —Nwy,) (65)
For very small mass and very strong internal magnetic field equation

(64) and becomes:

2.2 1
e s’ pb. . €
O CET/ R, P
m m

I e
f=-S.B,
2nm
Substituting (66) and (67) in (21) yields:
es,B; —ies,B;
C,=Ae ™ ¢ 2m
es,B;
_Ae "
- iesB
e 2m
Taking the real part
es,B;

_ Ae M
coses,Bt/2mn

2 es,B;
2 e M

_ 69
| , es,B;t 9

2mn
With the aid of equation (4.4.69) the exponential term gives

m
2es, B,
And the cosine term gives
c)’=1  at=0 [C[ =0

[w_ 1\/—eZSfo , 265,80,

Cl

C, (68)

es,BT, =«
2mm 2
" (1)
mnz
T, =
es,B,
When the internal field B, is neglected equations (64) and (65) reads
_—lay
p 2
1 nw
60=E\/(T1w12)2 = 212
In view of equation (21)
iopt —haypt
C,=Ae ?2e 2

Taking the real part of C, thus:

(66)

(67)

(70)
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@yt

C,=Ae 2 cosm, %

2 _ w,t
IC,|” = A’e™* cos® —;2

Thus the relaxation time according to the exponential term is given by:

2
N@y,
And according to the cosine term is given by
c,* =1 t=0
. V4
C.[* =0 T2y 2
2 2
b Vs T
T,=—"="—== (72)
v, o0-0, @

Where is @ the proton frequency which is readied for transition from level
E, =nw, tolevel E; = nw, such that [19,20, 21, 22, 23]
ne=E -E;, =mo, —no,

I1.  DISCUSSION

Schrodinger Equation in the energy space two level systems in equation (1) is used to find new expressions for the
relaxation time. The energy wave function was assumed to be in the form suggested in equation (12). Substituting
this solution in the Schrodinger equation (11) and equating the coefficients of sin and cos the frequency ®» was found
in equation (18).Using the fact that the square of the wave function C; is proportional to probability the relaxation
time is shown to be inversely proportional to angular frequency as equation (20) shows. This agrees with the
ordinary one. For electric interaction another exponential solution of C; was suggested in equation (21). Using this
in equation (11) and equating real and imaginary parts, one founds ® in (27). Bearing in mind that |C;|? is the
probability in equation (31) and (32) the relaxation time T, i.e. the transverse one, is dependent on electric moment
as equation (59a) indicates. When the interaction potential depends on the magnetic interaction, the transverse
relaxation time depends on the internal magnetic field, which conforms to the ordinary one, since it depends
generally on the spin.

I11.  CONCLUSION

Using Schrodinger equation in the energy space a useful expression for the transverse relaxation time was found. It
was shown that, when electric interaction dominates the transverse relaxation time depends on electric dipole
moment. But when magnetic interaction becomes important it depends on internal magnetic field as well as
magnetic spin.
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