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ABSTRACT
In this paper, we find the necessary and sufficient condition to characterize the projective relation between two

2 = a? - - - -
subclasses of (a, 8)-metricsL = o+ f —B: and L = ‘%on a manifold M with dimensionn > 3, where a and &
are two Riemannian metrics, 8 and 5 are two non-zero 1-forms.
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I.  INTRODUCTION

In Finsler geometry, two Finsler metrics F and F on a manifold M are called projectively related if Gt = G +
Py‘, where G' and G' are the geodesic coefficients of F and F respectively and P = P(x, y) is a scalar function on
the slit tangent bundle TM,. In this case, any geodesic of the first is also geodesic for the second and viceversa. The
projective changes between two Finsler spaces have been studied by [1], [2], [3], [4], [6], [11],[13],[14], [18], [19],
[20].

(a, B)-metrics form a special and very important classes of Finsler metrics which can be expressed in the for F =
ap(s):s = g, where a is a Riemannian metric and S is a 1-form and ¢ is a C” positive function on the definite

2
domain. In particular, when ¢ = i the Finsler metric F = % is called Kropina metric. Kropina metric was first

introduced by L. Berwald in connection with two dimensional Finsler space with rectilinear extremal and was
investigated by V.K. Kropina [7]. They together with Randers metric are C-reducible [10]. However, Randers metric
are regular Finsler metric but Kropina metric is non-regular Finsler metric. Kropina metric seem to be among the
simplest nontrivial Finsler metric with many interesting applications in physics, electron optics with a magnetic
field, dissipative mechanics and irreversible thermodynamics [5], [15]. Also, there are interesting applications in
relativistic field theory, evolution and developmental biology.

Based on Stavrino’s work on Finslerian structure of anisotropic gravitational field [16], we know that the anisotropy
is an issue of the background radiation for all possible (a, 8)-metrics. Then the 1-form g represents the same
direction of the observed anisotropy of the microwave background radiation. That is, if two (a, B)-metrics F =
ap (S) and F = ag (g) are the same anisotropy directions (or, they have the same axis rotation to their
indicatrices), then their 1-form.

B and B are collinear, there is a function ueC*(M) such that B(x,y) = uf(x,y). By [3], for the projective
equivalence between a general (a, 8)-metric and a Kropina metric, we have the following lemma:

Lemma 1.1. Let F = agp (g)be an (a, B)-metricon n-dimensional manifold M(n > 3), satisfying that g is not

_ —2
parallel with respect to a,db # 0 everywhere (or) b = constant and F is not of Randers type. Let F = % be a

Kropina metric on the manifold M, where @ = A(x)a and § = u(x)B. Then F is Projectively Equivalent to F if and
only if the following equations holds,
[1+ (kg + kps®)s? + k3s?lo" = (ky + kps?) (@ — 59, (1.1)
Gt = GL + 0yt — o(k,a? + k)b, (1.2)
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by = 20[(1 + kyb?)ay; + (kyb? + k3)b;by), (1.3)
_ 1 v _ — _
5ij = 5 (b5 — b;5y), (1.9)
where ¢ =o(x)is a scalar function and 6 is 1-form, k,, k, k, are constants. In this case, both F =

_ =2
ag (g) and F = % are Douglas metrics.

The purpose of this paper is to study the projective relation of two subclasses of (a, 8)-metric. The main results of
the paper are as follows.

2 _ =2
Theorem 1.1. Let F=a+ —%be an (a, B)-metric and F = %be a Kropina metric on an n-dimensional

manifold M(n > 3) where a and @ are two Riemannian metrics, § and f are two non-zero 1-forms. Then F is
projectively equivalent to F if and only if they are Douglas metrics and the geodesic co-efficient of a and & have the
following relations
Gy — 202 7h' = Gl + = (@*5' + 7ob') + 6", (1.5)
Where bt = ai/b;, b = a/b;, b? = ||B||" and T = 7(x) is a scalar function and 6 = 6,y isa 1-form on M
a

By [8] and [9], we obtain immediately from theorem (1.1), that

2 _ =2
Proposition 1. Let F=a + 8 — % an (a, B)-metric and F = % be a Kropina metric on a n-dimensional manifold

M(n = 3) where a and @ are two Riemannian metrics, § and § are two nonzero collinear 1-forms. Then F is
projectively equivalent to F if and only if the following equations hold:

Gy — 2a2Th' = G + — (@25' + Toob") + 0", (16)
by; = 2t{(1 — 2b®a;; + 3b;b;} , (1.7)
Siy = 2 (B:5 — B;5,), (1.8)

where b;|; denote the coefficient of the covariant derivatives of f with respect to a.

Il.  PRELIMINARIES

We say that a Finsler metric is projectively related to another Finsler metric if they have the same geodesic as point
sets. In Riemannian geometry, two Riemannian metrics a and @ are projectively related if and only if their spray
coefficients have the relation [2],

GL = GE + A y*y', (2.1)
where 1 = A(x) is a scalar function on the based manifold and (x*, y*) denotes the local coordinates in the tangent
bundle TM.

Two Finsler metrics F and F on a manifold M are called projectively related if and only if their spray coefficients
have the relation [2],

G'=G"'+ Py 22)
where P(y) is a scalar function on TM\{0} and homogeneous of degree one in y.
For a given Finsler metric L = L(x, y), the geodesic of L satisfy the following ODE:

d?xt oci dx

S ac " G(x’dt)_o’
Where G' = G'(x, y) is called the geodesic coefficient, which is given by

A
G' = Zg”{[FZ]xmyzym - [Fz]xl}.
Let ¢ = ¢(s), |s| < by, be a positive C* function satisfying the following
@(s) —s@'(s) + (b%2 = s)¢e"(s) >0, (|S| <bh< b0>. (2.3)

If a = /aijyiyf is a Riemannian metric and g = b;y* is 1-form satisfying ||B,ll. < boVx € M,then F = ag(s),
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s= g is called an (regular) (a, 8)-metric. In this case, the fundamental form of the metric tensor induced by F is
positive definite.

Let VB = b;j;dx" ® dx’ be covariant derivative of B with respect to a.
Denote

1 1
= E(biu +by); sij = E(biu = byyp)-
Note that g is closed if and only if s;; = 0 [17].

— pi i il — el ol — i) _ inJ
Lets; = b'sy;, sj = a'sy, so = sy so =55y and 1o = 15y'y’.

The relation between the geodesic coefficients G* of F and geodesic coefficients G of a is given by

G = Gl + aQss{—2Qas, + ry9} + Wb! + Ba~ty! (2.4)

Where
__ 99 —s(pe" +¢'¢")
20{(p = s9") + (b% = s2)¢"}

= —(p’
§7se! ’
¥=s ! (p 2 2 "
. 2{(@ —S¢") + (b —s?)@"}
For a Kropina metric F = %, it is very easy to see that it is not a regular (@, 8)-metric but the relation ¢(s) —
s@'(s) + (b2 —s¥)¢''(s) > 0 isstill true for |s| > 0.
In [8], the authors characterized the (a, 8)-metrics of Douglas type.

Lemma 2.2. [8]: Let F = a¢p (ﬁ) be a regular (a, §)-metric on an n-dimensional manifold M(n > 3). Assume that

a

B is not parallel with respect to « and db # 0 everywhere or b= constant and F is not of Randers type.
Then F is a Douglas metric if and only if the function ¢ = @(s) with ¢(0) = 1 satisfies the following ODE’s
[1+ (ky + kp5?)s? + kss?le” = (ky + kps?) (@ — s90), (2.5)

and p satisfies

byj = 20[(1 + kyb?)ay; + (kyb? + k3)b;by] (2.6)
Where b? = ||B]|2 and ¢ = o(x) is ascalar function and k,, k,, k5 are constants (k,, k3) # (0,0).
For a Kropina metric, we have the following,

Lemma 2.3.[9]: Let F = %2 be Kropina metric on an n-dimensional manifold M. Then
(i) (n = 3)Kropina metric F with b2 # 0 is Douglas metric if and only if
1
Sik = b_z(bisk - b]Sl) (27)
(ii) (n = 2) Kropina metric F is a Douglas metric.

Definition 2.1. [2]: Let
P 0 i 16"
Djkl ~ ayiaykay! (G n+1 aymy ) (28)
Where G is the spray coefficients of F. The tensor D = D}klai ® dx’ ® dx* ® dx! is called the Douglas tensor.

A Finsler metric is called Douglas metric if the Douglas tensor vanishes.

\

We know that the Douglas tensor is a projective invariant [12]. Note that the spray coefficients of a Riemannian
metric are quadratic forms and one can see that the Douglas tensor vanishes from (2.8). This shows that Douglas
tensor is a non-Riemannian quantity.

In the following, we use quantities with a bar to denote the corresponding quantities of the metric F.
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Now, first we compute the Douglas tensor of a general (a, 8)-metric.
Let
G' = GL + aQs + Y{—2Qus, + 1o }b, (2.9)
then (2.4) becomes
G' = G' + 0{—2Qas, + ryotatyl.
Clearly, Gland G' are projective equivalent according to (2.2), they have the same Douglas tensor.
Let

T! = aQs{ + P{—2Qas, + ro}b'. (2.10)
Then G' = G} + T, thus
Djlkl = Djlkl'
=2 i L 0GR iy pi_ 10T
- 63yjayk6yl ( X npt19ym +T n+19ym )
=9 (pi__LroT" i
 aylaykayl (T n+1 6ymy ) (211)

To compute (2.11) explicitly, we use the following identities
ak = aly, Syk = a?(bya — syy),
da
ay—k. Then
[@Qs5*]ym = a ' ym Qs + @ 2Q [bpa® — Bymlss* = Q'so,

where y; = a;y'. Here after, a i« means

and
[¥(—2Qas, + roo)bm]ym = Tya_l(bz — 5% [roo — 2QaS,] + 2¥[r, — Qb* - 5%)so — Qsso]

where r; = b'r;; and 1, = r;y". Thus from (2.10) , we have

o = Q'so + Yot (b? — sH)[rgo — 2Qus] + 2¥[ry — Q (b? — s?)sy — Qsso]. (2.12)
Let F and F be two (a, §)-metrics, we assume that they have the same Douglas tensor, i.e.
D%, = Di,.
jkl jkl

From (2.8) and (2.11), we have

93 A 1 _ .
—|T'—-T"' - Tl — T ‘)=0
dyJay*ay ( - on+1 (T = Tyin)y
Then there exists a class of scalar function Hj;, = Hj; (x), such that
. . p— 1 i .
| . .H(l,o :‘T‘ - Ti- E(T;'}n —Tm)y', (2.13)
where Hg, = Hpy/y*, T'and T,m are given by (2.10) and (2.12) respectively

1. PROJECTIVE RELATION OF CLASSES OF (a, B)-METRICS
In this section, we find the projective relation between special metric (a, 8)-metric

2 _ =2
F=a+p- - and F = % on a same underlying manifold M of dimension n > 3.

2
For (o,B)-metricF =a+ f — %, one can proveby (2.3) that F is a regular Finsler metric if and only if 1-

form [3 satisfies the condition ||BX||a < 1foranyx € M.
The geodesic coefficients are given by (2.4) with

{1+ 352 —4s3%}

0= s —si{1= b2 + 3577
1-2s
Q= 14 s?
VY= 3.1
For Kropina metric F = %2 the geodesic coefficient are given by (2.4) with
_ 1
¢="%
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D)

Il

|
%

P = (3.2)

==
In this paper we assume that A = ﬁ Since the Douglas tensor is a projective invariant,

we have,

2 _ =2
Theorem 3.2. Let F=a+ 8 — % be an (a, B)- metricand F = % be a Kropina metric on an n-dimensional

manifold M(n > 3) where @ and @ are two Riemannian metrics, 8 and f8 are two non zero 1-forms. Then F and F
have the same Douglas tensors if and only if they are all Douglas metrics.

Proof: First, we prove the sufficient condition.
Let F and F be Douglas metrics and corresponding Douglas tensors be D}, and Dj,,.Then by the definition of
Douglas metric, we have Djikl =0and E}kl = 0, that is both F and F have the same Douglas tensor, then (2.13)
holds.

Plugging (3.1) and (3.2) into(2.13), we have

Ala® + B'a® + C'a’” + D'a® + E'a® + Fla* + Gla® + H'a? + I! N Ala® + B!

00 = Ja8 + Kab+ La* + Ma? + N 2b2B (3.3)
where At = (1 -2b){s} +
2sob' — 2b2%si}, Bl = (1 — 2b%){4b?Bsk — 4Bsob' — 1yeb' +
20y (ro + S0) — 2Bsé}, Ct = B[B{(4ab?*(b? — 4) + 7)s{ + 4(2 — b%syb))} + 4(1 +
b)Asey'], D! = B[-2p3{(4b%(b? — 4) + 7)s§ + (8 — 4b?)seb'} + (1 + b?)Aseb' — Brooh'(4b? — 5) —
20y'{3B%1y0 + B((4b? — 5)ry + (12b2 — 3)s0)}], Et = B3[3p{5s{ +

2sobt — 4b?%si} + (4 — 4b¥)so)y'],

Fi = p3[6p*{4b%sy — 12s,b' — 5s§} — (7 — 2b2)Broeb’ + {6(1 — 2bP)ro + B((14 — 4b?)r, +

(6 — 12b?)s,) Ay, G' = 9pB°s},
H' = =3B°[B{6Bss + b'roo} + 6Ay'{(b* — 2)190 — B(15 + 50D}, I' = 6871500y

And

J=(1-2b%73

K =4B%(1 - 2b*)(2 — b?),

L =2B%11 + 2b* — 14b?),

M = —12B%(b? - 2),

N =9p8

And
Al = b%5t — b's,,
B! = B[2Ay'(F, + 5p) — biToo].
Further, (3.3) is equivalent to

(A'a® + B'a® + C'a’ + D'a® + E'a® + Fla* + G'a® + H'a® + I')(2b%f) + (A'a* + BY) x
(Ja® + Ka® + La* + Ma? + N) = H,(2b%8)(Ja® + Ka® + La* + Ma? + N) (3.4)

Replacing (y%) by (—y?) in (3.4) yields

(—A'a® + B'a® — C'a” + D'a® — E'a® + Fla* — G'a® + H'a? + 1)) (—2b%f) — (A'@? + BY)
x (Ja® + Ka®+ La* + Ma? + N) = —Hi,(Ja® + Ka® + La* + Ma? + N)(2b*B) (3.5)

Adding (3.4) and (3.5), we get
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(Ala® + Cla” + Ela® + G'a®)(2D%B) = 0
Above equation reduces to
Ata® + Cla’ + E'a® + Gla® =0 (3.6)

Therefore, we conclude that (3.3) is equivalent to

i _ Bla®+Dia®+Fla*+Hia?+1' | A'@*+B
Hgo = +—== 3.7

Ja8+Ka®+La*+Ma2+N 2b2B

(3.7) is equivalent to
B'a® + D'a®+ Fla* + H'a? + 1) (2b*B) + (A'a* + B') x
(Ja® + Ka® + La* + Ma? + N) = Hi,(2b%8)(Ja® + Ka® + La* + Ma? + N) (3.8)

In the above equation (3.8), we can see that A'@?(Ja® + Ka® + La* + Ma? + N) can be divided by 5. Since § =
upB, then At@?Ja® can be divided by £ . Because f3 is prime with respect to a and a. Therefore A' = b25} — b's,
can be divided by . Hence there is a scalar function Wi(x) such that

%5 — b'5, = p¥! (3.9

Transvecting (3.9) by 7; = a@;;y’, we get W!(x) = —s'. Thus we have

(Ei_j - j§i) (3.10)

_ =2 2

Thus, by lemma 2.3, F = % is a Douglas metrics.i.e. Both F = a + f — -
_ =2

and F = ‘% are Douglas metrics.

— a? —
Ifn=2,F= ‘% is a Douglas metric by lemma 2.3. Thus Fand F have the same Douglas tensors means that they

are Douglas metrics. Thus Fand F have the same Douglas tensors means that they are Douglas metrics. Thus F =
2 _ =2
a+p— % be an special (a, 8) —metric and F = % be a Kropina metric on an n-dimensional manifold M(n > 2),

where @ and @ are Riemannian metric, S and  are two non zero collinear 1-forms. Then F and F have same
Douglas tensors if and only if they are Douglas metrics. This completes the proof of theorem (3.2).

IV. PROOF. OF THEOREM 1.1.

First, we prove the necessary condition:

Since Douglas tensor is an invariant under projective changes between two Finsler metrics, If F is projectively
related to F, then they have the same Douglas tensor. According to theorem (3.2), we obtain that both F and F are
Douglas metrics.

By [3], It is well known that Kropina metric F =%2with b% # 0is a Douglas metric if and only ifs; =
bl—z(bl-sk — bys;) and also it has it has been proved that by [7], we know that (a, ) —metric, F = a + f — 72 isa
Douglas metric if and only if

where T = 7(x)is a scalar function on M. In this case, £ is closed.
Plugging (4.1) and (3.1) into (2.4), we have

ad+3ap?-4p83
a?+aB-p?

G'=GL+ ( )ryi — 2ta’®b! (4.2)
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Again plugging (3.10) and (3.2) into (2.4), we have
Gi=GL+ 222{ a?st + (25yy" — 7o) + 2 T"(’By} (4.3)
Since F is Projectively equivalent to F, then their exit a scalar function P = P(x,y) on TM\{0} such that

G'=G' + Py' (4.9)
By (4.2), (4.3) and (4.4), we have

a® +3ap? —4p3 1 fooB\| . S 1 . .
[P—( P B )T—_—<§0+ 00ﬁ>]yl =G;,—G&—Zazrbl—ﬁ(&2§l+ﬁ)ob‘)

a?+af — f? b2 a?
(4.5)
Note that RHS of above equation is in quadratic form.
Then there must be a one form 6 = 6;y* on M, such that

ad +3ap? —4p83 1/ ToB
[P—< O+ af — 2 T—ﬁ S°+&2 =0
Gé—2a27b1—6‘+—(0¢ §'+ pob?) + 0y' (4.6)

2b?
This completes the proof of necessity.
Conversely from (4.2), (4.3) and (1.5) we have
i _ ~Ai a3+3aﬁ2—4ﬁ3 i — fOOE i
Gi=Gl+ [9_+ (L)t + 5 (5 + 2]y 4.7)
Thus F is projectively equivalent to F. From the above theorem, immediately we get the following corollary

Thus (4.5) becomes

Corollary 4.1. [18]: Let L = o+ p — = be a special (o, )-metric and F = —be a Kropina metric be two (o, B)-

metrics on a n-dimensional manifold M W|th dimension n > 3, where o and @ are two Riemannian metrics, p and
are two non-zero collinear 1-forms. Then F is projectively related to F if and only if they are Douglas metrics and
the spray coeffcients of a and a have the following relations
G' — 202 1b! = GL +—(otzsl + Foobt) + Oy,
sij =0

1 _ _

Where b;;; denotes the coeffcients of the covariant derivative of B with respect to a.
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