Advances in Aeronautical Science and Engineering
ISSN: 1674-8190

Optimized Data Management Using an Enhanced B-Tree Algorithm
Aman Sharma’, Kavya Desai?, Pranav Sinha*, Tanvi Malik*, and Dr. Meera Joshi®
1. 2. 384 Department of Computer Science, School of Cloud Computing, Institute of Technology and
Energy Management, India
5 Department of Electrical Engineering, Pant University of Agriculture and Technology, Pant Nagar, India

ABSTRACT

Main memory and secondary memory are different types of memory resources, as both of them have different
properties and characteristics. It is often hard to load a large size of datasets into the main memory due to its cost
and secondary memory can hold a large amount of data but the access time is comparatively slower than main
memory. That’s why datasets reside in secondary storage HDDs, Magnetic tapes, etc. To process such size of
datasets, a required part of datasets is retrieved from secondary storage and is placed in the internal memory for
processing with the help of data-structures like B-trees and B+ trees andother variants of B-trees. For a large dataset
in primary memory CPU processing time and number of disk access time are important.In processing of B-tree,
number of disk access depends on height of B-tree which is O(logbiocksizer2 N), SO N0 change can be done in the
number of the disk access. In this paper we would use an efficient algorithm to modify CPU processing time from
O(n)to O(log n).

Keywords: B- Tree, B+ Tree, Data Management, Primary memory, secondary memory.

l. INTRODUCTION

B-trees[1] and B+ trees[2] are disk based data structures that are stored and accessed from disk. The processing
however is done in memory. If a change is done in it is immediately written on the disk. They are used in the
implementation of databases like spatial databases. As the datasets are increasing in size it is getting habitual to use
disk based data structures instead of placing whole dataset in main memory.

Main memory and secondary memory have different properties like, access time on main memory is faster than
secondary memory and main memory is more costly so large datasets can be impractical to load. Data structures that
are efficient on main memory may not work as same on secondary memory.

The data flow in disk based data structure is that the data is first fetched from the disk and then put into the memory
to process, after processing the disk write operation is used to update the disk. Many data structures can be used to
hold the processing in memory like, array, linked list, binary trees, B-trees and B+ trees. B-trees use nodes that are
transferred to memory for processing.

In real- world, data is increasing due to exponential increase of structured and unstructured data. It is becoming
impractical to process that amount of data as a data structure on the main memory. Efficient data structures like
array, linked list, binary tree, B-trees and B+ trees are proposed but all of these have their pros and cons. Main
memory is fast but less in comparison to secondary memory. So, secondary memory is used to store the datasets. So
with increasing data, better retrieval speeds are also required. For that efficient algorithms are being created which
focus to decrease the processing time, disk accesses.

In disk based data structures processing, storing and accessing are the three time complexity defining factors [4]. In
this paper, the proposed structure and algorithm for the implementation of B-tree will focus to reduce the CPU
processing time.

Il. LITERATURE REVIEW

B-trees is mostly used as a standard in disk-based data structure as it is efficient and can have variants to improve
the data handling process. Douglas Comer, in “The Ubiquitous B-tree” [1] published that why B-trees are so
successful by mentioning its operations insertion, balancing, deletion and splitting. He wrote about various variants
of B-trees i.e. B*trees and B+ trees and their properties. Virtual B-tree was an idea discussed in this paper which
uses the concept of paging and addressing.Jan Jannik, in “Implementation and deletion in B+ trees” [2] proposed

Volume 15, No 2, 2024 52 https://aaseresearch.com/

Advances in Aeronautical Science and Engineering
ISSN: 1674-8190

that an algorithm for implementation of B+ trees with the help of C programming libraries. In his paper he wrote
that “deletion, due to its greater complexity and perceived lesser importance” and proposed algorithm for better
deletion operation in B+ trees.In “Introduction to Algorithms”, by Thomas H. Cormen et al. [3] mentioned that the
node size of the B-tree in secondary storage is depends on the page size. The page size is the size of unit data that is
transferred from secondary storage to main memory.

I1. METHODOLOGY

This paper proposed a modified structure of a node in a B-tree which is as follows:
struct node
{ int value;
Int nextindex;
long pointer*c; //c may be null pointer or disk pointer
}pds[blocksize];

Value | Index to next node Child Pointer

Figurel: Representation of a Node in B- Tree

The structure contains an array of nodes. Each node consists an integer value to store the data. Pointer to the child
node and next Index, will hold the index of the next node in the same pds. The field nextindex is taken as an integer
to save space.

3.1 Proposed algorithm for searching an item:

Instead of linear search in original algorithm, proposed algorithm is performed binary search on nodes array as
follow:

Volume 15, No 2, 2024 53 https://aaseresearch.com/

Advances in Aeronautical Science and Engineering
ISSN: 1674-8190

Stepl: Fetch the nodes array i.e pds from secondary storage
Disk_read(pds)
Binary_search_node(pds,item)
Step2: Intialise variables lower_bound(lb),upper_bound (ub), location(loc), middle (mid)
Ib->1 ub->n[pds] loc->1 mid=(Ib+ub)/2
Step3: Compare the value of middle node element with “item” and proceed accordingly
If (pds[mid].value==item)
loc->mid
return (loc)
else
If (pds[mid].value>item)
ub->mid-1
Ib->mid+1
Step4: Iterate till Ib==ub
if (Ib==ub) loc>1b
Step5: read the child node from secondary memory
If (leaf(pds))
Return -1;
Else
If(pds[loc].value>item)
pds=Disk_read(pds[loc-1].c)
else pds=Disk_read(pds[loc].c)
call the function recursively
Step6: END

Volume 15, No 2, 2024 54 https://aaseresearch.com/

Advances in Aeronautical Science and Engineering
ISSN: 1674-8190

3.2 Proposed Algorithm for Inserting an Item
In this algorithm we are first doing binary search to reach the leaf node where we have to insert the item. If the leaf
node is already filled, then we would split the node into 2 and send the median value to the parent. We will repeat

this process until all nodes are completely filled or less than block size. Our algorithm does not require shifting of
values as we are storing them with the help of the variable “nextIndex”.

INSERT: 3,26,4,25,5,23,8,18,10,17,11,16,12,15,14

Stepl: Fetch the nodes array(root) i.e pds from secondary storage
pds=Disk_read(pds)
Step2: Intialise variables lower_bound(Ib), upper_bound(ub) and location(loc)
step3: initialize variable mid
mid=(lb+ub)/2
Step4: Compare the value of middle node element with “item” and proceed

accordingly
If (pds[mid].value==item)
loc->mid
else
If (pds[mid].value>item)
ub->mid-1
Ib->mid+1

Step5: Iterate till Ib==ub
if (Ib==ub) loc=>1b
Step6: check type of node and insert accordingly
If leaf(pds)
If node is full, Split the node
Else Insert accordingly

Else
Read the child node from secondary memory
If(pds[loc].value>item)
pds=Disk_read(pds[loc -1].c)
else pds=Disk_read(pds[loc].c)
call the function recursively
B-tree_insert(pds,item)
Step7: END
Pds
0 1 2 3 4
null 1 5 2 11 3 16 4 23 | 14
Child 1 Child 2 Child 3 Child 4 Child 5
3,4 8,10 12,14,15 17,18 25,26

Volume 15, No 2, 2024 55 https://aaseresearch.com/

Advances in Aeronautical Science and Engineering
ISSN: 1674-8190

Pds (leaf)
null 1 l 5 2 11 3 16 4 23 | -1 ‘
o[2] 2| =] e
null null null null null

Insert 14

After traversal, loc = 2, n[pds] =4
Pds[loc].nextindex = n[pds] +1
Pds[n[pds]+1].nextlndex =loc + 1
Pds[n[pds]+1].value = 14

null 1 ‘ 5 2 11 5 ‘ 16 | 4 23 | -1 14, 3

ol rl 2= e s

null null null null null null

Disk_write() is done according to the next index.

3.3 Proposed Algorithm for Splitting a Node:

In the proposed algorithm, the child node would be split in to 2 parts. The median value of the node will be sent to
the parent node. We pass 3 arguments, node which we want to split, its parent node and location in the parent node
where value should be placed.

3.4 Algorithm Analysis
There are 3 ways calculating recursion:
e Substitution Method
e Recursive tree method
e Master Method
Complexity calculation using Master Method:
T(n) =aT(n/b) + f(n) wherea>=1andb>1
There are following three cases:
1. If f(n) = ®(n°) where ¢ < Logpa then T(n) = ©(n-°%a)
2. If f(n) = ©(n®) where ¢ = Logpa then T(n) = @(n°Log n)
3.If f(n) = O(n°®) where ¢ > Logpa then T(n) = O(f(n))

Binary Search — T(n) = T(n/2) + O(1)
a=1l,b=2,k=0andp=0

bk=1. So, a=b*and p > -1 [Case 2.(a)]
T(n) = 6(n'"%a logP*n)

T(n) = 6(logn)

Table 1: Time complexity of searching and inserting a key in proposed algorithm and general B-Tree algorithm

Data Structure used SEARCHING OPERATION INSERTION OPERATION
B-TREE O(nlogn) O(n?logn)

PROPOSED DATA | ©(logn*logn) O(logn*logn)
STRUCTURE

Volume 15, No 2, 2024 56 https://aaseresearch.com/

