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ABSTRACT 

In this paper, we find the necessary and sufficient condition to characterize the projective relation between two 

subclasses of (𝛼, 𝛽)-metrics L = α + β −
β

2

α
 and 𝐿̅  =  

𝛼̅2

 𝛽̅
 on a manifold M with dimension 𝑛 ≥  3, where 𝛼 and 𝛼̅ 

are two Riemannian metrics, 𝛽 and 𝛽̅ are two non-zero 1-forms. 
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I. INTRODUCTION 
 

In Finsler geometry, two Finsler metrics 𝐹 and 𝐹̅ on a manifold M are called projectively related if 𝐺𝑖 =  𝐺̅𝑖  +
 𝑃𝑦𝑖 , where 𝐺𝑖  and 𝐺̅𝑖  are the geodesic coefficients of 𝐹 and 𝐹̅ respectively and 𝑃 = 𝑃(𝑥, 𝑦) is a scalar function on 

the slit tangent bundle 𝑇𝑀0. In this case, any geodesic of the first is also geodesic for the second and viceversa. The 

projective changes between two Finsler spaces have been studied by [1], [2], [3], [4], [6], [11],[13],[14], [18], [19], 

[20]. 

 

(𝛼, 𝛽)-metrics form a special and very important classes of Finsler metrics which can be expressed in the for  𝐹 =

𝛼φ(𝑠): 𝑠 =
𝛽

𝛼
, where 𝛼 is a Riemannian metric and β is a 1-form and 𝜑 is a 𝐶∞ positive function on the definite 

domain. In particular, when φ =  
1

𝑠
, the Finsler metric 𝐹 =

𝛽2

𝛼
  is called Kropina metric. Kropina metric was first 

introduced by L. Berwald in connection with two dimensional Finsler space with rectilinear extremal and was 

investigated by V.K. Kropina [7]. They together with Randers metric are C-reducible [10]. However, Randers metric 

are regular Finsler metric but Kropina metric is non-regular Finsler metric. Kropina metric seem to be among the 

simplest nontrivial Finsler metric with many interesting applications in physics, electron optics with a magnetic 

field, dissipative mechanics and irreversible thermodynamics [5], [15]. Also, there are interesting applications in 

relativistic field theory, evolution and developmental biology. 

 

Based on Stavrino’s work on Finslerian structure of anisotropic gravitational field [16], we know that the anisotropy 

is an issue of the background radiation for all possible (𝛼, 𝛽)-metrics. Then the 1-form 𝛽 represents the same 

direction of the observed anisotropy of the microwave background radiation. That is, if two (𝛼, 𝛽)-metrics 𝐹 =

𝛼𝜑 (
𝛽

𝛼
) and 𝐹̅ = 𝛼̅𝜑 (

𝛽̅

𝛼̅
)  are the same anisotropy directions (or, they have the same axis rotation to their 

indicatrices), then their 1-form. 

 

𝛽 and 𝛽̅ are collinear, there is a function 𝜇𝜖𝐶∞(𝑀) such that 𝛽(𝑥, 𝑦) = 𝜇𝛽̅(𝑥, 𝑦). By [3], for the projective 

equivalence between a general (𝛼, 𝛽)-metric and a Kropina metric, we have the following lemma: 

Lemma 1.1. Let 𝐹 = 𝛼𝜑 (
𝛽

𝛼
)be an (𝛼, 𝛽)-metricon n-dimensional manifold M(𝑛 ≥  3), satisfying that 𝛽 is not 

parallel with respect to 𝛼, 𝑑𝑏 ≠  0 everywhere (or) b = constant and F is not of Randers type. Let 𝐹̅  =  
𝛼̅2

𝛽̅
 be a 

Kropina metric on the manifold M, where 𝛼̅ = 𝜆(𝑥)𝛼 and 𝛽̅ = 𝜇(𝑥)𝛽. Then F is Projectively Equivalent to 𝐹̅ if and 

only if the following equations holds, 

               [1 + (𝑘1 + 𝑘2𝑠2)𝑠2 + 𝑘3𝑠2]𝜑′′ = (𝑘1 + 𝑘2𝑠2)(𝜑 − 𝑠𝜑′),                (1.1) 

                                                                  𝐺𝛼
𝑖 = 𝐺̅𝛼̅

𝑖 + 𝜃𝑦𝑖 − 𝜎(𝑘1𝛼2 + 𝑘2𝛽2)𝑏𝑖 ,   (1.2) 
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                                                         𝑏𝑖|𝑗 = 2𝜎[(1 + 𝑘1𝑏2)𝑎𝑖𝑗 + (𝑘2𝑏2 + 𝑘3)𝑏𝑖𝑏𝑗],                (1.3)         

                                                                  𝑠̅𝑖𝑗 =
1

𝑏̅2 (𝑏̅𝑖 𝑠̅𝑗 − 𝑏̅𝑗 𝑠̅𝑖),     (1.4)  

where σ = σ(x) is a scalar function and 𝜃 is 1-form, k 1 , k 2  k 3  are constants. In this case, both  𝐹 =

𝛼𝜑 (
𝛽

𝛼
) 𝑎𝑛𝑑 𝐹̅ =

𝛼̅2

𝛽̅
 are Douglas metrics. 

 

The purpose of this paper is to study the projective relation of two subclasses of (𝛼, 𝛽)-metric. The main results of 

the paper are as follows. 

 

Theorem 1.1. Let 𝐹 = 𝛼 + 𝛽 −
𝛽2

𝛼 
 be an (𝛼, 𝛽)-metric and 𝐹̅ =

𝛼̅2

𝛽̅
 be a Kropina metric on an n-dimensional 

manifold 𝑀(𝑛 ≥  3) where 𝛼 and 𝛼 ̅ are two Riemannian metrics, 𝛽 and 𝛽̅ are two non-zero 1-forms. Then F is 

projectively equivalent to 𝐹̅ if and only if they are Douglas metrics and the geodesic co-efficient of 𝛼 and 𝛼 ̅have the 

following relations 

                                 𝐺𝛼
𝑖 − 2𝛼2 𝜏𝑏𝑖 = 𝐺̅𝛼̅

𝑖 +
1

2𝑏̅2 (𝛼̅2𝑠̅𝑖 + 𝑟̅00𝑏̅𝑖) + 𝜃𝑦𝑖 ,                 (1.5) 

Where 𝑏𝑖 = 𝑎𝑖𝑗𝑏𝑗 , 𝑏̅𝑖 = 𝑎̅𝑖𝑗𝑏̅𝑗 ,  𝑏̅2 = ‖𝛽̅‖
𝛼̅ 

2
𝑎𝑛𝑑 𝜏 = 𝜏(𝑥) is a scalar function and 𝜃 = 𝜃𝑖𝑦

𝑖 is a  1-form on 𝑀 

 

By [8] and [9], we obtain immediately from theorem (1.1), that 

 

Proposition 1. Let 𝐹 = 𝛼 + 𝛽 −
𝛽2

𝛼
 an (𝛼, 𝛽)-metric and 𝐹̅ =

𝛼̅2

𝛽̅
 be a Kropina metric on a n-dimensional manifold 

𝑀(𝑛 ≥  3) where 𝛼 and 𝛼̅ are two Riemannian metrics,  𝛽 and 𝛽̅ are two nonzero collinear 1-forms. Then 𝐹 is 

projectively equivalent to 𝐹̅ if and only if the following equations hold: 

                   𝐺𝛼
𝑖 − 2𝛼2 𝜏𝑏𝑖 = 𝐺̅𝛼̅

𝑖 +
1

2𝑏̅2 (𝛼̅2𝑠̅𝑖 + 𝑟̅00𝑏̅𝑖) + 𝜃𝑦𝑖 ,                (1.6) 

                                 𝑏𝑖|𝑗 = 2𝜏{(1 − 2𝑏2)𝑎𝑖𝑗 + 3𝑏𝑖𝑏𝑗} ,                      (1.7) 

                                  𝑠̅𝑖𝑗 =
1

𝑏̅2 (𝑏̅𝑖𝑠̅𝑗 − 𝑏̅𝑗 𝑠̅𝑖),                                          (1.8) 

where 𝑏𝑖|𝑗  denote the coefficient of the covariant derivatives of  𝛽 with respect to 𝛼. 

 

II. PRELIMINARIES 
 

We say that a Finsler metric is projectively related to another Finsler metric if they have the same geodesic as point 

sets. In Riemannian geometry, two Riemannian metrics 𝛼 𝑎𝑛𝑑 𝛼̅ are projectively related if and only if their spray 

coefficients have the relation [2], 

                                                             𝐺𝛼
𝑖 = 𝐺𝛼̅

𝑖 + λxk 𝑦𝑘𝑦𝑖 ,                                                  (2.1) 

where 𝜆 = 𝜆(𝑥) is a scalar function on the based manifold and (𝑥𝑖 , 𝑦𝑖) denotes the local coordinates in the tangent 

bundle 𝑇𝑀. 
 

Two Finsler metrics 𝐹 𝑎𝑛𝑑 𝐹 ̅on a manifold 𝑀 are called projectively related if and only if their spray coefficients 

have the relation [2], 

                                                       𝐺𝑖 = 𝐺̅𝑖 + 𝑃(𝑦)𝑦𝑖                                                 (2.2) 

where 𝑃(𝑦) is a scalar function on 𝑇𝑀\{0} and homogeneous of degree one in 𝑦. 

For a given Finsler metric 𝐿 = 𝐿(𝑥, 𝑦), the geodesic of 𝐿 satisfy the following ODE: 

𝑑2𝑥𝑖

𝑑𝑡2
+ 2𝐺𝑖 (𝑥,

𝑑𝑥

𝑑𝑡
) = 0 ,  

Where 𝐺𝑖 = 𝐺𝑖(𝑥, 𝑦) is called the geodesic coefficient, which is given by 

𝐺𝑖 =
1

4
𝑔𝑖𝑙{[𝐹2]

𝑥𝑚𝑦𝑙𝑦𝑚 − [𝐹2]
𝑥𝑙}. 

Let 𝜑 = 𝜑(𝑠), |𝑠| < 𝑏0, 𝑏𝑒 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶∞ function satisfying the following 

                    𝜑(𝑠) − 𝑠𝜑′(𝑠) + (𝑏2 − 𝑠2)𝜑′′(𝑠) > 0,      (|𝑠| ≤  𝑏 <  𝑏 0 ).              (2.3) 

If 𝛼 = √𝑎𝑖𝑗𝑦𝑖𝑦𝑗 is a Riemannian metric and 𝛽 = 𝑏𝑖𝑦
𝑖 is 1-form satisfying ‖𝛽𝑥‖𝛼 < 𝑏0∀𝑥 ∈ 𝑀, 𝑡ℎ𝑒𝑛 𝐹 = 𝛼𝜑(𝑠),
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𝑠 =
𝛽

𝛼
,  is called an (regular) (𝛼, 𝛽)-metric. In this case, the fundamental form of the metric tensor induced by 𝐹 is 

positive definite. 

 

Let ∇𝛽 = 𝑏𝑖|𝑗𝑑𝑥𝑖 ⊗ 𝑑𝑥𝑗 be covariant derivative of 𝛽 with respect to 𝛼. 

Denote  

    𝑟𝑖𝑗 =
1

2
(𝑏𝑖|𝑗 + 𝑏𝑗|𝑖); 𝑠𝑖𝑗 =

1

2
(𝑏𝑖|𝑗 − 𝑏𝑗|𝑖). 

Note that 𝛽 is closed if and only if  𝑠𝑖𝑗 = 0 [17]. 

 

Let 𝑠𝑗 = 𝑏𝑖𝑠𝑖𝑗 , 𝑠𝑗
𝑖 = 𝑎𝑖𝑙𝑠𝑙𝑗 , 𝑠0 = 𝑠𝑖𝑦𝑖 ,  𝑠0

𝑖 = 𝑠𝑗
𝑖𝑦𝑗   𝑎𝑛𝑑  𝑟00 = 𝑟𝑖𝑗𝑦𝑖𝑦𝑗 . 

The relation between the geodesic coefficients 𝐺𝑖  𝑜𝑓 𝐹 and geodesic coefficients 𝐺𝛼
𝑖  of 𝛼 is given by 

𝐺𝑖 = 𝐺𝛼
𝑖 + 𝛼𝑄𝑠0

𝑖 {−2𝑄𝛼𝑠0 + 𝑟00} + Ψbi + θα−1yi,                            (2.4)  

    

 

 Where 

𝜃 =
𝜑𝜑′ − 𝑠(𝜑𝜑′′ + 𝜑′𝜑′)

2𝜑{(𝜑 − 𝑠𝜑′) + (𝑏2 − 𝑠2)𝜑′′}
 

                                               𝑄 =
𝜑′

𝜑−𝑆𝜑′ 

                                                     Ψ =
1

2

φ′′

{(φ − Sφ′) + (b2 − s2)φ′′}
 

For a Kropina metric 𝐹 =
𝛼2

𝛽
, it is very easy to see that it is not a regular (𝛼, 𝛽)-metric but the relation 𝜑(𝑠) −

𝑠𝜑′(𝑠) + (𝑏2 − 𝑠2)𝜑′′(𝑠) > 0  is still true for  |𝑠| > 0. 
In [8], the authors characterized the (𝛼, 𝛽)-metrics of Douglas type. 

 

Lemma 2.2. [8]: Let 𝐹 = 𝛼𝜑 (
𝛽

𝛼
) be a regular (𝛼, 𝛽)-metric on an n-dimensional manifold 𝑀(𝑛 ≥ 3). Assume that 

𝛽 is not parallel with respect to 𝛼 and 𝑑𝑏 ≠ 0 everywhere or                𝑏= constant and 𝐹 is not of Randers type. 

Then 𝐹 is a Douglas metric if and only if the function 𝜑 = 𝜑(𝑠) with 𝜑(0) = 1 satisfies the following ODE’s 

             [1 + (𝑘1 + 𝑘2𝑠2)𝑠2 + 𝑘3𝑠2]𝜑′′ = (𝑘1 + 𝑘2𝑠2)(𝜑 − 𝑠𝜑′) ,                            (2.5) 

and 𝛽 satisfies 

                                                         𝑏𝑖|𝑗 = 2𝜎[(1 + 𝑘1𝑏2)𝑎𝑖𝑗 + (𝑘2𝑏2 + 𝑘3)𝑏𝑖𝑏𝑗]                   (2.6) 

Where 𝑏2 = ‖𝛽‖𝛼
2  𝑎𝑛𝑑 𝜎 = 𝜎(𝑥)  is a scalar function and   𝑘1, 𝑘2, 𝑘3 are constants (𝑘2, 𝑘3) ≠ (0,0). 

For a Kropina metric, we have the following, 

 

Lemma 2.3.[9]: Let  𝐹 =
𝛼2

𝛽
  be Kropina metric on an n-dimensional manifold 𝑀. Then 

(i) (𝑛 ≥ 3)Kropina metric 𝐹 with 𝑏2 ≠ 0 is Douglas metric if and only if  

                                                          𝑠𝑖𝑘 =
1

𝑏2 (𝑏𝑖𝑠𝑘 − 𝑏𝑗𝑠𝑖).                   (2.7) 

(ii) (𝑛 = 2) Kropina metric 𝐹 is a Douglas metric. 

 

Definition 2.1. [2]: Let                                                                          

                                                𝐷𝑗𝑘𝑙
𝑖 =  

𝜕3

𝜕𝑦𝑗𝜕𝑦𝑘𝜕𝑦𝑙 (𝐺𝑖 −
1

𝑛+1

𝜕𝐺𝑚

𝜕𝑦𝑚 𝑦𝑖)                        (2.8) 

 

Where 𝐺𝑖  is the spray coefficients of  𝐹. The tensor 𝐷 = 𝐷𝑗𝑘𝑙
𝑖 𝜕𝑖 ⊗ 𝑑𝑥𝑗 ⊗ 𝑑𝑥𝑘 ⊗ 𝑑𝑥𝑙 is called the Douglas tensor. 

A Finsler metric is called Douglas metric if the Douglas tensor vanishes. 

\ 

We know that the Douglas tensor is a projective invariant [12]. Note that the spray coefficients of a Riemannian 

metric are quadratic forms and one can see that the Douglas tensor vanishes from (2.8). This shows that Douglas 

tensor is a non-Riemannian quantity. 

 

In the following, we use quantities with a bar to denote the corresponding quantities of the metric 𝐹.̅ 
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Now, first we compute the Douglas tensor of a general (𝛼, 𝛽)-metric. 

 Let  

                                    𝐺̂𝑖 = 𝐺𝛼
𝑖 + 𝛼𝑄𝑠0

𝑖 + Ψ{−2Qαs0 + r00}bi,                                   (2.9)   

then (2.4) becomes  

                𝐺𝑖 = 𝐺̂𝑖 + 𝜃{−2𝑄𝛼𝑠0 + 𝑟00}𝛼−1𝑦𝑖 . 
Clearly, 𝐺𝑖𝑎𝑛𝑑 𝐺̂𝑖 are projective equivalent according to (2.2), they have the same Douglas tensor. 

Let 

                                                            𝑇𝑖 = 𝛼𝑄𝑠0
𝑖 + Ψ{−2Qαs0 + r00}bi.                                  (2.10) 

Then 𝐺̂𝑖 = 𝐺𝛼
𝑖 + 𝑇𝑖 , thus 

                                 𝐷𝑗𝑘𝑙
𝑖 = 𝐷̂𝑗𝑘𝑙

𝑖 , 

    = 
𝜕3

𝜕𝑦𝑗𝜕𝑦𝑘𝜕𝑦𝑙 (𝐺𝛼
𝑖 −

1

𝑛+1

𝜕𝐺𝛼
𝑚

𝜕𝑦𝑚 𝑦𝑖 +  𝑇𝑖 −
1

𝑛+1

𝜕𝑇𝑚

𝜕𝑦𝑚 𝑦𝑖) 

                                     =
𝜕3

𝜕𝑦𝑗𝜕𝑦𝑘𝜕𝑦𝑙 (𝑇𝑖 −
1

𝑛+1

𝜕𝑇𝑚

𝜕𝑦𝑚 𝑦𝑖)                                                          (2.11) 

To compute (2.11) explicitly, we use the following identities  

  𝛼𝑦𝑘 = 𝛼−1𝑦𝑘 , 𝑠𝑦𝑘 = 𝛼−2(𝑏𝑘𝛼 − 𝑠𝑦𝑘), 

where 𝑦𝑖 = 𝑎𝑖𝑙𝑦𝑙 .  𝐻𝑒𝑟𝑒 𝑎𝑓𝑡𝑒𝑟, 𝛼𝑦𝑘  𝑚𝑒𝑎𝑛𝑠  
𝜕𝛼

𝜕𝑦𝑘. Then  

                       [𝛼𝑄𝑠0
𝑚]𝑦𝑚 = 𝛼−1𝑦𝑚𝑄𝑠0

𝑚 + 𝛼−2𝑄′[𝑏𝑚𝛼2 − 𝛽𝑦𝑚]𝑠0
𝑚 =  𝑄′𝑠0, 

and  

[Ψ(−2Qαs0 + r00)bm]ym = Ψ′α−1(b2 − s2)[r00 − 2QαS0] + 2Ψ[r0 − Q′(b2 − s2)s0 − Qss0] 

 

where 𝑟𝑖 = 𝑏𝑖𝑟𝑖𝑗 𝑎𝑛𝑑 𝑟0 = 𝑟𝑖𝑦𝑖 . Thus from (2.10) , we have  

   𝑇𝑦𝑚
𝑚 = 𝑄′𝑠0 + Ψ′α−1(b2 − s2)[r00 − 2Qαs0] + 2Ψ[r0 − Q′(b2 − s2)s0 − Qss0].            (2.12) 

Let 𝐹 and 𝐹̅ be two (𝛼, 𝛽)-metrics, we assume that they have the same Douglas tensor, i.e. 

𝐷𝑗𝑘𝑙
𝑖 = 𝐷̅𝑗𝑘𝑙

𝑖 . 

From (2.8) and (2.11), we have  

𝜕3

𝜕𝑦𝑗𝜕𝑦𝑘𝜕𝑦𝑙
(𝑇𝑖 − 𝑇̅𝑖 −

1

𝑛 + 1
(𝑇𝑦𝑚

𝑚 − 𝑇̅𝑦𝑚
𝑚 )𝑦𝑖) = 0 

Then there exists a class of scalar function 𝐻𝑗𝑘
𝑖 = 𝐻𝑗𝑘

𝑖 (𝑥), such that 

                                𝐻00
𝑖 = 𝑇𝑖 − 𝑇̅𝑖 −

1

𝑛+1
(𝑇𝑦𝑚

𝑚 − 𝑇̅𝑦𝑚
𝑚 )𝑦𝑖 ,                                                         (2.13) 

where 𝐻00
𝑖 = 𝐻𝑗𝑘

𝑖 𝑦𝑗𝑦𝑘 , 𝑇𝑖𝑎𝑛𝑑 𝑇𝑦𝑚 
𝑚 are given by (2.10) 𝑎𝑛𝑑 (2.12) respectively 

 

 

III. PROJECTIVE RELATION OF CLASSES OF (𝜶, 𝜷)-METRICS 
 

In this section, we find the projective relation between special metric  (𝛼, 𝛽)-metric                 

𝐹 = 𝛼 + 𝛽 −
𝛽2

𝛼
  and  𝐹̅ =

𝛼̅2

𝛽̅
 on a same underlying manifold  𝑀 of dimension 𝑛 ≥ 3. 

       For  (α, β)-metric 𝐹 = 𝛼 + 𝛽 −
𝛽2

𝛼
,  one can proveby (2.3) that 𝐹 is a regular Finsler metric if and only if 1-

form  satisfies the condition ‖β
x
‖

𝛼
< 1 for any 𝑥 ∈ 𝑀. 

The geodesic coefficients are given by (2.4) with 

 

𝜃 =
{1 + 3𝑠2 − 4𝑠3}

2{1 + 𝑠 − 𝑠2}{1 −  2𝑏2  +  3𝑠2}
, 

𝑄 =  
1 − 2𝑠

1 + 𝑠2
,  

                                               Ψ = −
1

1−2b2+3s2 ,                                                                               (3.1) 

For Kropina metric 𝐹̅ =
𝛼̅2

𝛽̅
, the geodesic coefficient are given by (2.4) with 

𝑄̅ = −
1

2𝑠
 

Advances in Aeronautical Science and Engineering
ISSN: 1674-8190

Volume 15, No 6, 2024                              36                         https://aaseresearch.com/



𝜃̅ = −
𝑠

𝑏̅2
 

                                                                      Ψ̅ =
1

2𝑏̅2 .                                                                    (3.2) 

In this paper we assume that  λ =
1

𝑛+1
. Since the Douglas tensor is a projective invariant, 

 

we have,  

 

Theorem 3.2. Let  𝐹 = 𝛼 + 𝛽 −
𝛽2

𝛼
 be an (𝛼, 𝛽)- metric and 𝐹̅ =

𝛼̅2

𝛽̅
 be a Kropina metric on an n-dimensional 

manifold 𝑀(𝑛 ≥ 3) where 𝛼 𝑎𝑛𝑑 𝛼̅ are two Riemannian metrics, 𝛽 𝑎𝑛𝑑 𝛽̅ are two non zero 1-forms. Then 𝐹 and 𝐹̅ 

have the same Douglas tensors if and only if they are all Douglas metrics. 

 

Proof: First, we prove the sufficient condition. 

Let 𝐹 and 𝐹̅ be  Douglas metrics and corresponding Douglas tensors be 𝐷𝑗𝑘𝑙
𝑖  𝑎𝑛𝑑 𝐷̅𝑗𝑘𝑙

𝑖 .Then by the definition of 

Douglas metric, we have 𝐷𝑗𝑘𝑙
𝑖 = 0 𝑎𝑛𝑑 𝐷̅𝑗𝑘𝑙

𝑖 = 0, that is both 𝐹 and 𝐹̅ have the same Douglas tensor, then (2.13) 

holds. 

Plugging (3.1) and (3.2) into(2.13), we have  

𝐻00
𝑖 =

𝐴𝑖𝛼9 + 𝐵𝑖𝛼8 + 𝐶𝑖𝛼7 + 𝐷𝑖𝛼6 + 𝐸𝑖𝛼5 + 𝐹𝑖𝛼4 + 𝐺𝑖𝛼3 + 𝐻𝑖𝛼2 + 𝐼𝑖

𝐽𝛼8 + 𝐾𝛼6 + 𝐿𝛼4 + 𝑀𝛼2 + 𝑁
+

𝐴̅𝑖𝛼̅2 + 𝐵̅𝑖

2𝑏̅2𝛽̅
      (3.3) 

 

where                                                                                                                                            𝐴𝑖 = (1 − 2𝑏2){𝑠0
𝑖 +

 2𝑠0𝑏𝑖 − 2𝑏2𝑠0
𝑖 },                                                                                       𝐵𝑖 = (1 − 2𝑏2){4𝑏2𝛽𝑠0

𝑖 − 4𝛽𝑠0𝑏𝑖 − 𝑟00𝑏𝑖 +

2λyi(r0 + s0) − 2𝛽𝑠0
𝑖 },                                      𝐶𝑖 = 𝛽[𝛽{(4𝑏2(𝑏2 − 4) + 7)𝑠0

𝑖 + 4(2 − 𝑏2𝑠0𝑏𝑖)} + 4(1 +

𝑏2)λs0yi],    𝐷𝑖 = 𝛽[−2𝛽3{(4𝑏2(𝑏2 − 4) + 7)𝑠0
𝑖 + (8 − 4𝑏2)𝑠0𝑏𝑖} + (1 + 𝑏2)λ𝑠0𝑏𝑖 − 𝛽𝑟00𝑏𝑖(4𝑏2  −  5) −

           2λyi{3β2𝑟00 + 𝛽((4b2 − 5)r0 + (12b2 − 3)s0)}],                                                            𝐸𝑖 = 𝛽3[3𝛽{5𝑠0
𝑖 +

2𝑠0𝑏𝑖 − 4𝑏2𝑠0
𝑖 } + (4 − 4𝑏2)𝑠0λyi], 

 𝐹𝑖 = 𝛽3[6𝛽2{4𝑏2𝑠0
𝑖 − 12𝑠0𝑏𝑖 − 5𝑠0

𝑖 } − (7 − 2𝑏2)𝛽𝑟00𝑏𝑖 + {6(1 − 2𝑏2)𝑟00 + 𝛽((14 −                    4𝑏2)r0 +

(6 − 12𝑏2)𝑠0)}λyi],                                                                                                        𝐺𝑖 = 9𝛽6𝑠0
𝑖 ,                                                                                                                                       

𝐻𝑖 = −3𝛽5[𝛽{6𝛽𝑠0
𝑖 +  𝑏𝑖𝑟00} + 6λyi{(𝑏2 − 2)𝑟00 − 𝛽(𝑟0 + s0)}],                                               𝐼𝑖 = 6𝛽7𝑟00λyi 

 

 

And                                                                                                                                                                                       

  𝐽 = (1 − 2𝑏2)2,                                                                                                                                                                   
𝐾 = 4𝛽2(1 − 2𝑏2)(2 − 𝑏2),                                                                                                                                              
𝐿 = 2𝛽4(11 + 2𝑏4 − 14𝑏2),                                                                                                                                          
 𝑀 = −12𝛽6(𝑏2 − 2), 
𝑁 = 9𝛽8  

 

And  

𝐴̅𝑖 = 𝑏̅2𝑠̅0
𝑖 − 𝑏̅𝑖𝑠̅0, 

𝐵̅𝑖 = 𝛽̅[2λyi(r̅0 + s̅0) − b̅ir̅00]. 
 

Further, (3.3) is equivalent to 

 

(𝐴𝑖𝛼9 + 𝐵𝑖𝛼8 + 𝐶𝑖𝛼7 + 𝐷𝑖𝛼6 + 𝐸𝑖𝛼5 + 𝐹𝑖𝛼4 + 𝐺𝑖𝛼3 + 𝐻𝑖𝛼2 + 𝐼𝑖)(2𝑏̅2𝛽̅) + (𝐴̅𝑖𝛼̅2 + 𝐵̅𝑖) × 

       (𝐽𝛼8 + 𝐾𝛼6 + 𝐿𝛼4 + 𝑀𝛼2 + 𝑁) = 𝐻00
𝑖 (2𝑏̅2𝛽̅)(𝐽𝛼8 + 𝐾𝛼6 + 𝐿𝛼4 + 𝑀𝛼2 + 𝑁)            (3.4) 

 

Replacing (𝑦𝑖) by (−𝑦𝑖) in (3.4) yields 

 

(−𝐴𝑖𝛼9 + 𝐵𝑖𝛼8 − 𝐶𝑖𝛼7 + 𝐷𝑖𝛼6 − 𝐸𝑖𝛼5 + 𝐹𝑖𝛼4 − 𝐺𝑖𝛼3 + 𝐻𝑖𝛼2 + 𝐼𝑖)(−2𝑏̅2𝛽̅) − (𝐴̅𝑖𝛼̅2 + 𝐵̅𝑖) 

× (𝐽𝛼8 + 𝐾𝛼6 + 𝐿𝛼4 + 𝑀𝛼2 + 𝑁) = −𝐻00
𝑖 (𝐽𝛼8 + 𝐾𝛼6 + 𝐿𝛼4 + 𝑀𝛼2 + 𝑁)(2𝑏̅2𝛽̅)           (3.5) 

 

Adding (3.4) 𝑎𝑛𝑑 (3.5), we get 
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(𝐴𝑖𝛼9 + 𝐶𝑖𝛼7 + 𝐸𝑖𝛼5 + 𝐺𝑖𝛼3)(2𝑏̅2𝛽̅) = 0 

Above equation reduces to 

                                                   𝐴𝑖𝛼9 + 𝐶𝑖𝛼7 + 𝐸𝑖𝛼5 + 𝐺𝑖𝛼3 = 0                                               (3.6) 

 

Therefore, we conclude that (3.3) is equivalent to 

 

                                                 𝐻00
𝑖 =

𝐵𝑖𝛼8+𝐷𝑖𝛼6+𝐹𝑖𝛼4+𝐻𝑖𝛼2+𝐼𝑖

𝐽𝛼8+𝐾𝛼6+𝐿𝛼4+𝑀𝛼2+𝑁
+

𝐴̅𝑖𝛼̅2+𝐵̅𝑖

2𝑏̅2𝛽̅
                                       (3.7) 

 

(3.7) is equivalent to 

𝐵𝑖𝛼8 + 𝐷𝑖𝛼6 + 𝐹𝑖𝛼4 + 𝐻𝑖𝛼2 + 𝐼𝑖)(2𝑏̅2𝛽̅) + (𝐴̅̅ ̅𝑖𝛼̅2 + 𝐵̅𝑖) × 

(𝐽𝛼8 + 𝐾𝛼6 + 𝐿𝛼4 + 𝑀𝛼2 + 𝑁) = 𝐻00
𝑖 (2𝑏̅2𝛽̅)(𝐽𝛼8 + 𝐾𝛼6 + 𝐿𝛼4 + 𝑀𝛼2 + 𝑁)              (3.8) 

 

In the above equation (3.8), we can see that 𝐴̅𝑖𝛼̅2(𝐽𝛼8 + 𝐾𝛼6 + 𝐿𝛼4 + 𝑀𝛼2 + 𝑁) can be divided by 𝛽̅. Since 𝛽 =
𝜇𝛽̅, then 𝐴̅𝑖𝛼̅2𝐽𝛼8 can be divided by 𝛽̅ . Because 𝛽̅ is prime with respect to 𝛼 𝑎𝑛𝑑 𝛼.̅ Therefore 𝐴̅𝑖 = 𝑏̅2𝑠̅0

𝑖 − 𝑏̅𝑖𝑠̅0 

can be divided by 𝛽̅. Hence there is a scalar function Ψi(x) such that 

                                                             𝑏̅2𝑠̅0
𝑖 − 𝑏̅𝑖𝑠̅0 = 𝛽̅Ψi                                                                                         (3.9) 

 

Transvecting (3.9) by  𝑦̅𝑖 = 𝑎̅𝑖𝑗𝑦𝑗, we get  Ψi(x) = −s̅i. Thus we have 

 

                                                       𝑠̅𝑖𝑗 =
1

𝑏̅2
(𝑏̅𝑖 𝑠̅𝑗 − 𝑏̅𝑗 𝑠̅𝑖)                                                                 (3.10) 

 

Thus, by lemma 2.3, 𝐹̅ =
𝛼̅2

𝛽̅
 is a Douglas metrics. i.e. Both 𝐹 = 𝛼 + 𝛽 −

𝛽2

𝛼
 , 

 and 𝐹̅ =
𝛼̅2

𝛽̅
 are Douglas metrics. 

If  𝑛 = 2 , 𝐹̅ =
𝛼̅2

𝛽̅
 is a Douglas metric by lemma 2.3. Thus 𝐹𝑎𝑛𝑑 𝐹̅ have the same Douglas tensors means that they 

are Douglas metrics. Thus 𝐹𝑎𝑛𝑑 𝐹̅ have the same Douglas tensors means that they are Douglas metrics. Thus 𝐹 =

𝛼 + 𝛽 −
𝛽2

𝛼
 be an special (𝛼, 𝛽) −metric and 𝐹̅ =

𝛼̅2

𝛽̅
 be a Kropina metric on an n-dimensional manifold 𝑀(𝑛 ≥ 2), 

where 𝛼 𝑎𝑛𝑑 𝛼̅ are Riemannian metric,  𝛽 𝑎𝑛𝑑 𝛽̅ are two non zero collinear 1-forms. Then 𝐹 and 𝐹̅ have same 

Douglas tensors if and only if they are Douglas metrics. This completes the proof of theorem (3.2). 

 

IV. PROOF. OF THEOREM 1.1. 
 

First, we prove the necessary condition: 

Since Douglas tensor is an invariant under projective changes between two Finsler metrics, If 𝐹 is projectively 

related to 𝐹̅, then they have the same Douglas tensor. According to theorem (3.2), we obtain that both 𝐹 and 𝐹̅ are 

Douglas metrics. 

By [3], It is well known that Kropina metric 𝐹̅ =
𝛼̅2

𝛽̅
with 𝑏2 ≠ 0 is a Douglas metric if and only if 𝑠𝑖𝑘 =

1

𝑏2
(𝑏𝑖𝑠𝑘 − 𝑏𝑘𝑠𝑖) and also it has it has been proved that by [7], we know that (𝛼, 𝛽) −metric, 𝐹 = 𝛼 + 𝛽 −

𝛽2

𝛼
 is a 

Douglas metric if and only if  

 

                                              𝑏𝑖|𝑗 = 2𝜏{(1 − 2𝑏2)𝑎𝑖𝑗 + 3𝑏𝑖𝑏𝑗}                                                  (4.1)   

                    

where 𝜏 =  𝜏(𝑥)is a scalar function on M. In this case, β is closed. 

Plugging (4.1) and (3.1) into (2.4), we have 

 

                                            𝐺𝑖 = 𝐺𝛼
𝑖 + (

𝛼3+3𝛼𝛽2−4𝛽3

𝛼2+𝛼𝛽−𝛽2 ) 𝜏yi − 2𝜏𝛼2bi                                   (4.2) 
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Again plugging (3.10) and (3.2) into (2.4), we have 

 

                                         𝐺̅𝑖 = 𝐺̅𝛼
𝑖 +

1

2𝑏̅2 {−𝛼̅2𝑠̅𝑖 + (2𝑠̅0𝑦𝑖 − 𝑟̅00𝑏̅𝑖) + 2
𝑟̅00𝛽̅𝑦𝑖

𝛼̅2 }                      (4.3) 

 

Since F is Projectively equivalent to 𝐹̅, then their exit a scalar function 𝑃 =  𝑃(𝑥, 𝑦) 𝑜𝑛 𝑇𝑀\{0} such that        

                                                         𝐺𝑖 = 𝐺̅𝑖  +  𝑃𝑦𝑖                                                               (4.4) 

By (4.2), (4.3) and (4.4), we have 

[𝑃 − (
𝛼3 + 3𝛼𝛽2 − 4𝛽3

𝛼2 + 𝛼𝛽 − 𝛽2
) 𝜏 −

1

𝑏̅2
(𝑠̅0 +

𝑟̅00𝛽̅

𝛼̅2
)] 𝑦𝑖  = 𝐺𝛼

𝑖 − 𝐺̅𝛼̅
𝑖 − 2𝛼2𝜏𝑏𝑖 −

1

2𝑏̅2
(𝛼̅2𝑠̅𝑖 + 𝑟̅00𝑏̅𝑖) 

(4.5) 

Note that RHS of above equation is in quadratic form. 

Then there must be a one form 𝜃 = 𝜃𝑖𝑦
𝑖  on M, such that 

[𝑃 − (
𝛼3 + 3𝛼𝛽2 − 4𝛽3

𝛼2 + 𝛼𝛽 − 𝛽2
) 𝜏 −

1

𝑏̅2
(𝑠̅0 +

𝑟̅00𝛽̅

𝛼̅2
)] = 𝜃 

Thus (4.5) becomes 

                                            𝐺𝛼
𝑖 − 2𝛼2 𝜏𝑏𝑖 = 𝐺̅𝛼̅

𝑖 +
1

2𝑏̅2 (𝛼̅2𝑠̅𝑖 + 𝑟̅00𝑏̅𝑖) + 𝜃𝑦𝑖                           (4.6) 

This completes the proof of necessity. 

Conversely from (4.2), (4.3) and (1.5) we have 

                                          𝐺𝑖 = 𝐺̅𝑖 + [𝜃 + (
𝛼3+3𝛼𝛽2−4𝛽3

𝛼2+𝛼𝛽−𝛽2 ) 𝜏 +
1

𝑏̅2 (𝑠̅0 +
𝑟̅00𝛽̅

𝛼̅2 )] 𝑦𝑖                   (4.7) 

Thus 𝐹 is projectively equivalent to 𝐹̅. From the above theorem, immediately we get the following corollary 

Corollary 4.1. [18]: Let L = α + β −
β

2

α
 be a special (α, β)-metric and F̅ =

α̅2

β̅
 be a Kropina metric be two (α, β)-

metrics on a n-dimensional manifold M with dimension n ≥  3, where α and α̅ are two Riemannian metrics, β and β̅ 

are two non-zero collinear 1-forms. Then F is projectively related to F̅ if and only if they are Douglas metrics and 

the spray coeffcients of α and α̅ have the following relations 

                 Gi − 2α2 τbi = G̅α̅
i +

1

2b̅2 (α̅2s̅i + r̅00b̅i) + θyi, 

                                            sij = 0 

                                            s̅ij =
1

b̅2
(b̅is̅j − b̅js̅i) 

                                           bi|j = 2τ{(1 − 2b2)aij + 3bibj} 

 

Where bi|j denotes the coeffcients of the covariant derivative of β with respect to α. 
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