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ABSTRACT 
The problem of hydro magnetic fully developed laminar mixed convective flow in a vertical channel with symmetric 

and asymmetric wall heating conditions in the presence of radiation effect is considered. The velocity and the 

temperature fields are obtained analytically by perturbation series method which employees a perturbation parameter 

Br   proportional to the Brinkman number. The effects of the various parameters such as Brinkman number 

Br , Hartmann number M , heat source or heat sink  and radiation effect F are illustrated graphically and 

discussed.  It is observed that the effect of M is to decrease the velocity and temperature for positive   and is to 

increase for negative   for both isoflux-isothermal and isothermal-isoflux wall heating conditions. 

 

Keywords: Magneto Convection, Brinkman number, Hartmann number, Perturbation Series method, Thermal 
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I. INTRODUCTION 
 

A combined free and forced convection flow of an electrically conducting and heat-generating or absorbing fluid in 

a channel in the presence of a transverse magnetic field is of special technical significance because of its frequent 

occurrence in many industrial applications such as geothermal reservoirs, cooling of nuclear reactors, thermal 

insulations and petroleum reservoirs. This type of problems also arises in electronic packages, microelectronic 

devices during their operations. 

 

Laminar mixed convection in a vertical plane channel has been investigated by A. Barletta and M. Celli [1] taking 

into account the effect of an external uniform magnetic field orthogonal to the flow direction to prove that heat flux 

due to viscous dissipation and due to joule heating at the isothermal walls are monotonic increasing functions of M. 

The effect of  Magnetic field M in the presence of heat generation and heat absorption increases the rate of heat 

transfer in the case of Isoflux-Isothermal wall heating conditions and decreases in the case of  Isothermal- Isoflux 

has been studied by J. C Umavathi et al [2]. Finite difference technique was employed by J. C Umavathi et al [3]  to 

study the effect of different parameters governing the flow and heat transfer for both open and short circuits. Patil 

Mallikarjun B [4] has discussed the problem of steady laminar mixed convection flow in an infinite vertical channel 

with applied magnetic field in the presence of viscous and ohmic dissipation. M Abd-El Aziz [5] observed that at 

high temperature differences, applying a uniform magnetic field to the flow can give an acceptable accurate velocity 

distribution in despite of using Boussinesq approximation which actually gives substantial errors and also discussed 

that the increase in the radiation parameter, increases wall couple stress and the heat transfer rate and greatly 

decreases the friction factor of a micro polar fluid. A. J Chamkha [6] studied the reversal flow near the walls of 

asymmetric channel wall temperatures and mixed wall thermal conditions and proved that the zone of assured 

reversal flow was found to increase because of the presence of the magnetic field or heat generation effects or both. 

J. C Umavathi and  M. S Malashetty [7] have proved that for asymmetric wall heating conditions  the viscous 

dissipation enhances the effect of flow reversal in the case of downward flow whereas  it counters this effect in the 

case of upward flow. A.Barletta et al [8] also studied mixed convection with heating effects in a vertical porous 

annulus with a radially varying magnetic field and proved that the velocity and temperature profiles depend in 

general on the choice of the reference temperature. The study of MHD flow by Ali J Chamka [9] , of a uniformly 

stretched vertical permeable surface in the presence of heat generation /absorption and a chemical reaction has 

shown that the fluid velocity increased during a generative chemical reaction and decreased during a destructive one. 

Also, he proved that the heat generation effects increased the fluid velocity while the heat absorption effects 

decreased it. 
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 J.P Garandet et al [10] did an asymptotic analysis to study the buoyancy driven convection in a uniform magnetic 

field. 

 

II. MATHEMATICAL FORMULATION 
 

Consider steady, laminar, and hydro magnetic fully developed flow in a parallel plate vertical channel. The physical 

configuration is described in Fig. 1 

 

 
Fig.1 Physical configuration

 
 

A constant magnetic field of strength 0B  is applied across the channel. Cartesian co-ordinate system is chosen with 

the transverse coordinate Y and the coordinate in the direction parallel to the walls is X . The origin of the axes is 

such that the channel walls are at positions 2LY /  and 2LY / .The thermal conductivity, the dynamic 

viscosity and the thermal expansion coefficient are considered as constant. 

The Oberbeck-Boussinesq approximation is assumed to hold and for the evaluation of the gravitational body force, 

the density is assumed to depend upon the temperature according to the equation of state 

              
  0 01 T T                                                                                                                                  (1) 

 

The condition of fully developed flow implies that 0XU  / . Then, since   the velocity field U is solenoidal, 

one obtains 0YV  / . As a consequence, the velocity  component V  is constant in any channel section and is 

equal to zero at the channel walls, so that V  must   be vanishing at   any position. The Y -momentum balance 

equation can be expressed as 0YP  /  where XgpP 0  is the difference between the pressure and the 

hydrostatic pressure. Therefore P  is depends only on X  and the Y momentum balance equation is given by 

  
22
0

0 2
0 0

1
0e e o o

o

B U B EdP d U
g T T

dX dY

 
 

  
      .                                                     (2) 

The walls of channel are considered to be isothermal. In particular, the temperature of the boundary at the left wall 

2/LY   is 1T , and the right wall 2/LY   is 2T , with 12 TT  . These wall temperatures are compatible 

with the equation (2) only when dXdP / is independent of X  and is equal to constant A     

          A
dX

dP
                                                                                                      (3) 

 

Differentiating equation (2) with respect to X , and using the equation (3) one obtains 
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         0
X

T





                                                                                                     (4) 

 

which shows that the temperature  also depends only  on Y . 

 

By taking into account the effects of viscous and ohmic dissipation and the heat source or sink, the energy balance 

equation can be written as  

      

 2 2 22
020 0 0 0

2
0 0 0 0 0

2 1
0e e e R

p p p p p P

Q T TB E E B dqd T dU
U

C dY C C C C C dYdY

  


    

 
       

 
             (5)    

      

Equations (2) and (5) allow one to obtain a differential equation for U , in the form of  

        

2 2 24 2
20 0 0 0 0

4 2

2 2
0 0 0

2e e e e

p

e e R

p

B g E B Q B B gd U Q d U
U U

K K K CdY dY

g E Q E B dqg dU QA g

C dY K K K K dY

     

    

   

    

   
     
   
   

 
     

 

m m

                         (6) 

 

The boundary conditions on U  are both the no slip conditions  

 0U         at          
2

L
Y                                                                (7) 

 

and those induced by the  thermal boundary conditions on T  and by  equations (2) and (3) are  

 

  22
1 0 0 0 0

2

e e
g T T E B B Ud U A

dY

  

   


          at            

2

L
Y   

 

  22
2 0 0 0 0

2

e e
g T T E B B Ud U A

dY

  

   


        at        

2

L
Y                                              (8) 

 

The following quantities are employed for writing equations (5) to (8) in the dimensionless form 
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
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T
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
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                     (9) 

 

The reference velocity 0U  and the reference temperature 0T  are given by 

2
;

48

21
0

2

0

TT
T

AD
U





.                                         (10) 

 

The temperature difference T  is given either by  

2 1T T T     if    
1 2T T      or                                                                                     (11) 
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2

2
T

pC D


    if    

1 2T T                                                                                                         (12) 

 

The dimensionless parameter TR  becomes zero for symmetric heating )( 21 TT   and one for asymmetric heating 

)( 21 TT  . Substituting the equation (9) into the equations (5) to (8) yields the following dimensionless equations. 

 

22
2 2 2 2 2 2

2
2 ( )

d du
Br M E Br M E Br u M Br u F

dydy


 

 
      

 
m                           (13) 

 

  
   

24 2
22 2 2 2 2

4 2

2 2 2

( )

( ) 48( )

d u d u du
M F M Br E u Br M F u

dydy dy

M F E F

   

 

 
       

 

  

m

m

                (14)  

 

Four boundary conditions are  

             0u      at        
1

4
y                                                                                                                           (15) 

 

 EM
2

R
48

dy

ud 2T

2

2




      at         
4

1
y   

 EM
2

R
48

dy

ud 2T

2

2




      at          
4

1
y                                        (16) 

 

Using equations (9) and (10) in equation (2) one obtains  









 EM

dy

ud
uM48

1 2

2

2
2


                                                    (17) 

 

The dimensionless temperature   can be evaluated either by integrating equation (13) or by using equation (17).   

If the viscous dissipation is negligible so that 0Br  , the dimensionless temperature  and dimensionless velocity 

u  are uncoupled. In this case solutions of equation (14) using boundary conditions (15) and (16) is 

 

2

2 2 2 2

48
1

/ 4 2( ( ))

4
4

T Sin F yRCoshMy SinhMy
u E

MCoshMM M F F Sinh
Sin



 

 
 

                  
 
 

         

for the case of heat source and                                                                                                                           (18) 

 

 

2

2 2 2 2

48
1

/ 4 2( ( ))

4
4

T Sinh F yRCoshMy SinhMy
u E

MCoshMM M F F Sinh
Sinh



 

 
 

                  
 
 

          (19) 

 

for the case of heat sink.  
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By substituting these velocity fields in equation (17), we get the temperature field for both the cases of heat source 

and  heat sink as, 

2

22

4

T Sin F yR

F
Sin











                                                (20) 

 

 

2

2

( )

2

4

T Sinh F yR

F
Sinh











                      (21) 

 If the electrical conductivity is negligible i.e. 0E  , then the velocity field for both the cases reduces to 

           

2

2 2 2 2

48
1

2( )

4 4
4

T Sin F yRCoshMy SinhMy
u

M MM M F FCosh Sinh
Sin



 

 
   
               

  
 

                                   (22) 

 

2

2 2 2 2

48
1

2( ( ))

4 4
4

T Sinh F yRCoshMy SinhMy
u

M MM M F FCosh Sinh
Sinh



 

 
   
               

  
 

                          (23) 

 

The temperature equation remains same as given by the above equations (20) and (21). When the parameters 

0E Br F     , velocity and temperature fields reduces to 

 


















4SinhM4

SinhMy
y

M

R2

4CoshM

CoshMy
1

M

48
u

2

T

2 //


                                (24) 

 

 yR2 T                                                                                                               (25) 

 

In the absence of applied magnetic field, electrical conductivity and internal heat source or sink coefficient the 

expression of velocity is,   

 
















 2T y

16

1
24y

3

R
u


                                           (26) 

 

and the temperature equation is same as given in  equation (25). 

 

In the case of asymmetric heating, when buoyancy forces are dominating i.e., 

when  , equations (18) and (19) gives, 

 

2

2 2 2

1

/ 42( ) / 4

Sin F yu SinhMy

SinhMM F Sin F



  

 
  
    

                                       (27) 
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2

2 2 2

1

/ 42( ( ) / 4

Sinh F yu SinhMy

SinhMM F Sinh F



  

 
  
    

                                      (28) 

 

Similarly equations (24) and (26) becomes, 

           









4SinhM4

SinhMy
y

M

2u
2 /

                                               (29)  

 

                







 2y

16

1

3

yu


                                                                                  (30) 

which is Batchelor’s  velocity profile for free convection. 

  

Solutions of equations (14) and (17) for viscous fluid in the absence of applied magnetic field, electrical 

conductivity, heat source or sink coefficient and buoyancy force leads to the Hagen-Poiseuille velocity profile  

         







 2y

16

1
24u                                                                                     (31) 

 

        
4

Br3
yR2yBr192 T

4                                      (32) 

If buoyancy forces are not considered, then 0 and viscous term is dominating i.e. 0Br   a purely forced 

convection occurs. In this case the solutions of velocity and temperature field becomes, 

 


















4CoshM

CoshMy
1E

M

48
u

2 /
                                 (33) 

 

for both the cases of heat source or heat sink.  

 
2 2
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where, 
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     
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1
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 

 
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for the case of heat source and 
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  
4

T
233211

4

1
SinhP2

R
ClCoshPlCoshPl

CoshP

1
C  ;  

for the case of heat sink. 

 

III. SOLUTIONS 
 

Equation (14) is nonlinear because of viscous and Ohmic dissipations and it is difficult to find the closed form 

solution. Thus perturbation series method is employed by defining the dimensionless parameter   

         

pC

Dg
PrReBr


                                        (36) 

 

as the perturbation parameter. Then the temperature field is obtained using equation (17). The solution of velocity 

field can be expressed by the perturbation expansion 

                  yuyuyuyuyu n

0n

n

2

2

10 




                                         (37) 

The second and higher order terms of  give a correction to 0,0 u  accounting for the viscous and Ohmic 

dissipation effects. Substituting equation (2) in equation (14) to (16) and equating the coefficients of like powers of 

  on both sides, one obtains the boundary value problem for 0n   as 

Isothermal-Isothermal )TT( 21  walls 

  
4 2

2 2 2 2 2 2 20 0
04 2

( ) ( ) 48( )
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M F M F u M F E F
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for the cases of heat source or heat sink.  
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4

1
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2
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2
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4

1
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Equation (3) is ordinary linear differential equation and its exact solutions can be found. The solutions of equation 

(3) are same as we obtain in the case of 0Br  . The solution of equation (3) using equations (4) and (5) are  

  
2 2

0 1 2 3 4 2

48
u C CoshMy C SinhMy C Cos F y C Sin F y E

M
                        (41) 

 

for the  case of heat source and  

          
2 2

0 1 2 3 4 2

48
u C CoshMy C SinhMy C Cosh F y C Sinh F y E

M
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for the  case of heat sink. The differential equation for 1n   and its boundary conditions become 
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24 2

22 2 2 2 201 1
1 04 2

( )
dud u d u

M F M F u M E u
dydy dy

 
 

       
 

m          (43) 
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 for the  cases of heat source and sink. 
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The solutions of equation (8) and (9) by applying the conditions given in equations (9) and (10) are,  
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for the  case of heat source and 
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                    (47) 

for the  case of heat sink. 

 

Evaluation of exact solutions for 2n   becomes complicated and hence neglecting the terms of 2n   and 

onwards, the solution of equation (14) is  

         10 uuu  .                                                                                                                      (48) 

 

The dimensionless temperature field is obtained from the equation (17) by substituting the solutions of 0u  and 1u  in 

equation (13) for both the cases of heat source or sink and is given by  
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Isoflux-isothermal )( 21 Tq   walls 

The non-dimensional quantities of thermal boundary conditions at the channel walls are, 

 
dY

dT
Kq1         at       

2

L
Y   

 2TT       at        
2

L
Y                                                                    (51) 

 

The dimensionless form of equation (16) can be obtained by using the equation  (9) with KDqT 1 / to give 

 1
dy

d



           at         

4

1
y   

 qtR  at          
4

1
y                                          (52) 

 

where TTTR 02qt /)(   is the thermal ratio parameter for the isoflux-isothermal case. Other than the 

no-slip conditions at the channel walls, two more boundary conditions in terms of U  are needed to solve the 

equation (6). These are the conditions given by equation (17). 

 

Differentiating equation (2) with respect to Y  with AdXdP /  gives 

 0
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dY

dUB

dY

Ud 2

0e

3

3
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                                                 (53) 
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Dimensionless form of above equation can be evaluated by using the equation (9),  

 0
dy

d

dy

du
M

dy

ud
2

3

3




                                     (54) 

 

Evaluating the equation (19) at the left wall )/( 41y   yields  

 
dy

du
M

dy

ud 2

3

3

  at         
4

1
y                                                  (55) 

 

The other boundary condition at the right wall can be shown to be the same as that given for the isothermal-

isothermal case with TR  replaced by qtR  such that 

 EM
2

R
48

dy

ud 2qt

2

2




      at         
4

1
y                                                                       (56)  

 

The solutions of velocity field and temperature field can be solved from equations (3), (8), (9) and (19) by using the 

boundary conditions (4), (5), (10) and (11).  

 

Isothermal-isoflux )( 21 qT  walls  

The non-dimensional quantities of thermal boundary conditions at the channel walls are, 
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dT
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Y                                                             (57) 

 

The dimensionless form of above equation can be obtained by using the equation (9) with KDqT 2 / to give 

 1
dy

d



            at             

4

1
y   

 tqR  at           
4

1
y                                     (58) 

 

where TTTR 01tq /)(   is the thermal ratio parameter for the isothermal-isoflux case. In this case also, the 

dimensionless form boundary conditions are solved similar to the previous section of isoflux-isothermal walls. 

 
dy

du
M

dy

ud 2

3

3

 at         
4

1
y                                                      (59) 

 

The other boundary condition at the right wall can be shown to be the same as that given for the isothermal-

isothermal case with TR  replaced by tqR  such that 

 EM48
2

R

4

1

dy

ud 2tq

2

2
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



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The solutions of velocity field and temperature field can be obtained from these conditions substituting in equations 

(3), (8), (9) and (16) for the cases of heat source and heat sink up to  1O .  
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IV. RESULTS AND DISCUSSION 
 

The problem of laminar magneto convection flow in a vertical channel in the presence of heat source or heat sink 

and in the presence of thermal radiation is presented graphically and the results are discussed in this section. 

 

Figures 2 to 5 display the effect of velocity and temperature fields for different values of   and . When  is 

positive,   is also positive and the flow is upward and the one other hand the flow is downward when   and  are 

negative. The effect of   and  on temperature is not sensible. It is also observed that the effect of   and  on u

and   remains the same for open and short circuits. 

 

Figures 6,7,8 and 9  presents velocity and temperature for various values of Hartmann number M  for 500 . 

It shows that the effect of magnetic field on the fluid flow in the channel is to suppress the flow. For   is positive 

results in reverse flow near the left wall and negative values of   produces flow reversal at the right wall. 

Application of a transverse magnetic field to an electrically conducting fluid gives rise to the Lorentz force, which 

acts in the direction opposite to that of the fluid causing it to slow down. This drag-like force increases as the 

strength of the magnetic field (represented by Hartmann number M ) increases producing further reductions in the 

fluid velocity. For the buoyancy aiding flow case (where   is positive) increasing the Hartmann number reduces 

the fluid adjacent to the cold left wall causing a flow reversal condition there. This reversed flow phenomenon 

increases as the strength of the magnetic field increases. For the buoyancy opposing flow case (where   is 

negative) the same phenomenon of reversed flow occurs but close to the hot right wall. 

 

Figure 10 illustrates the influence of heat source coefficient   on the velocity  profile. It is observed that as   

increases velocity and the magnitude is large for 1E compare to 1E  Plots of u and   are shown in 

Figures 11 and 12 for different values of Radiation parameter F. Here also as the radiation parameter F increases, the 

flow is enhanced at the right hot wall whereas flow reversal is observed at the left cool wall. The result is a similar 

in the case of temperature profile as well. It is seen that the radiation parameter F increases velocity linearly for 

small values of   whereas flow reversal is observed for large values of  .  

 

V. CONCLUSION  
 

The problem of  magneto convection  flow in an infinite vertical channel with heat source, sink and thermal 

radiation in the presence of viscous dissipation is discussed. Three different combinations of thermal left-right  wall 

conditions  are presented. Analytical solution for  the flow and temperature fields with reference to three different 

special cases  are obtained. graphical representations of all the results are presented for different parameters 

governing the flow and heat transfer. It is observed that the magneto convection parameter increases the velocity and 

temperature fields and also the  additional radiation  parameter positively effects in  increasing  the velocity and 

temperature fields.  
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Fig.2: Plots of u versus y in the case of asymmetric heating for different values of   
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