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ABSTRACT
The problem of hydro magnetic fully developed laminar mixed convective flow in a vertical channel with symmetric
and asymmetric wall heating conditions in the presence of radiation effect is considered. The velocity and the
temperature fields are obtained analytically by perturbation series method which employees a perturbation parameter

& = BrA proportional to the Brinkman number. The effects of the various parameters such as Brinkman number
Br, Hartmann number M , heat source or heat sink ¢@and radiation effect F are illustrated graphically and
discussed. It is observed that the effect of M is to decrease the velocity and temperature for positive A and is to
increase for negative A for both isoflux-isothermal and isothermal-isoflux wall heating conditions.

Keywords: Magneto Convection, Brinkman number, Hartmann number, Perturbation Series method, Thermal
radiation

I.  INTRODUCTION

A combined free and forced convection flow of an electrically conducting and heat-generating or absorbing fluid in
a channel in the presence of a transverse magnetic field is of special technical significance because of its frequent
occurrence in many industrial applications such as geothermal reservoirs, cooling of nuclear reactors, thermal
insulations and petroleum reservoirs. This type of problems also arises in electronic packages, microelectronic
devices during their operations.

Laminar mixed convection in a vertical plane channel has been investigated by A. Barletta and M. Celli [1] taking
into account the effect of an external uniform magnetic field orthogonal to the flow direction to prove that heat flux
due to viscous dissipation and due to joule heating at the isothermal walls are monotonic increasing functions of M.
The effect of Magnetic field M in the presence of heat generation and heat absorption increases the rate of heat
transfer in the case of Isoflux-lsothermal wall heating conditions and decreases in the case of Isothermal- Isoflux
has been studied by J. C Umavathi et al [2]. Finite difference technique was employed by J. C Umavathi et al [3] to
study the effect of different parameters governing the flow and heat transfer for both open and short circuits. Patil
Mallikarjun B [4] has discussed the problem of steady laminar mixed convection flow in an infinite vertical channel
with applied magnetic field in the presence of viscous and ohmic dissipation. M Abd-EIl Aziz [5] observed that at
high temperature differences, applying a uniform magnetic field to the flow can give an acceptable accurate velocity
distribution in despite of using Boussinesq approximation which actually gives substantial errors and also discussed
that the increase in the radiation parameter, increases wall couple stress and the heat transfer rate and greatly
decreases the friction factor of a micro polar fluid. A. J Chamkha [6] studied the reversal flow near the walls of
asymmetric channel wall temperatures and mixed wall thermal conditions and proved that the zone of assured
reversal flow was found to increase because of the presence of the magnetic field or heat generation effects or both.
J. C Umavathi and M. S Malashetty [7] have proved that for asymmetric wall heating conditions the viscous
dissipation enhances the effect of flow reversal in the case of downward flow whereas it counters this effect in the
case of upward flow. A.Barletta et al [8] also studied mixed convection with heating effects in a vertical porous
annulus with a radially varying magnetic field and proved that the velocity and temperature profiles depend in
general on the choice of the reference temperature. The study of MHD flow by Ali J Chamka [9] , of a uniformly
stretched vertical permeable surface in the presence of heat generation /absorption and a chemical reaction has
shown that the fluid velocity increased during a generative chemical reaction and decreased during a destructive one.
Also, he proved that the heat generation effects increased the fluid velocity while the heat absorption effects
decreased it.
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J.P Garandet et al [10] did an asymptotic analysis to study the buoyancy driven convection in a uniform magnetic
field.

1. MATHEMATICAL FORMULATION

Consider steady, laminar, and hydro magnetic fully developed flow in a parallel plate vertical channel. The physical
configuration is described in Fig. 1
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Fig.1 Physical configuration

A constant magnetic field of strength B0 is applied across the channel. Cartesian co-ordinate system is chosen with

the transverse coordinate Y and the coordinate in the direction parallel to the walls is X . The origin of the axes is

such that the channel walls are at positions Y =—L/2 and Y = L/2 .The thermal conductivity, the dynamic
viscosity and the thermal expansion coefficient are considered as constant.

The Oberbeck-Boussinesq approximation is assumed to hold and for the evaluation of the gravitational body force,
the density is assumed to depend upon the temperature according to the equation of state

p=po(1-A(T-T,)) @

The condition of fully developed flow implies that U /09X =0. Then, since the velocity field U is solenoidal,
one obtains 0V /0Y =0. As a consequence, the velocity component V is constant in any channel section and is
equal to zero at the channel walls, so that V' must be vanishing at any position. The Y -momentum balance
equation can be expressed as OP /Y =0 where P = p+ p, g X is the difference between the pressure and the
hydrostatic pressure. Therefore P is depends only on X and the Y momentum balance equation is given by
1dP  dWU o.BU o,BE,
gB(T-To)-— v S0 - _ _
po dX dy o Po

The walls of channel are considered to be isothermal. In particular, the temperature of the boundary at the left wall
Y=—-L/2is T, and the right wall Y =L/2 is T,, with T, >T,. These wall temperatures are compatible
with the equation (2) only when dP /dX is independent of X and is equal to constant A

dpP

A

dX

0o . )

©)

Differentiating equation (2) with respect to X , and using the equation (3) one obtains
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which shows that the temperature also depends only on Y .

By taking into account the effects of viscous and ohmic dissipation and the heat source or sink, the energy balance
equation can be written as

2 2 2 2 T-T
ad-|2-+L(d—Uj +UeBOU2+O'eE0 +20-9EOBOiQ( o)_ 1 dqR:0 -
dy? CpldY ) pCy PoCp PoCyp poCp  PoCp dY
Equations (2) and (5) allow one to obtain a differential equation for U , in the form of
4 2 2 2 2
d L: _| GeBo Q|d sz | 2899eEoBy QoeBy” |, 0eBiSY 2
dy u  Kjdy vK uK aCpu ©
2
, B9 (d—u) , B9oEy"  QouEoBy QA gfidgg
aC, \ dY vK uK  uK Ky dY
The boundary conditions on U are both the no slip conditions
Uu=0 at Y = J_rL U]
2
and those induced by the thermal boundary conditions on T and by equations (2) and (3) are
2
d%u :é_ﬂg(Tl_T0)+O'eEOBO+O'eBOU at Y=—£
dY2 M v U 7 2
2 T, -T 2
d?U _A_B9(Ta=To) oceEoBy  ceBo™W  _L ©
dy? u 14 u U 2
The following quantities are employed for writing equations (5) to (8) in the dimensionless form
_ 3 U, D 2
U, AT D 1% 1% a K
u? 2 E o . B§ D T,-T 2
Br = X o;¢:QD;E: 0 . 2_Te™ ;l:ﬂ;RTzz 1;02:D_
9)
The reference velocity U, and the reference temperature T, are given by
AD? T,+T
Uy, =— ;o To=—"7->2 (10)
48 2
The temperature difference AT is given either by
AT =T,-T, if T, #T, or (11)
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it T, =T, 12)

The dimensionless parameter R, becomes zero for symmetric heating (T, =T, ) and one for asymmetric heating
(T, <T, ). Substituting the equation (9) into the equations (5) to (8) yields the following dimensionless equations.

d%0 du’)’ 202 2 20012 2

—2=—Br — | =M E“Br-2M“EBru—-M“Bru“ m(¢—F*)é (13)
dy dy

4 2 2
d—zj—(Mzm¢+F2)d—l;:MZlBr(E+u)2+lBr(d—u] +M2(¢—F2)u

dy dy dy (14)

+M?(¢—F?)E ma8(¢—F?)

Four boundary conditions are
1

u=0 at =+— 15
y 4 (15)
2
ST S VLTV
dy 2 4
2
GU_ 48Rt imee oyl (16)
dy 4
Using equations (9) and (10) in equation (2) one obtains
2
o=-1lag-mu:+ 9 Y _Mm2E a7
A dy

The dimensionless temperature & can be evaluated either by integrating equation (13) or by using equation (17).

If the viscous dissipation is negligible so that Br =0, the dimensionless temperature & and dimensionless velocity
U are uncoupled. In this case solutions of equation (14) using boundary conditions (15) and (16) is

yo [ﬁ_ Ej(l_ CoshMy j+ ARy Sinyg—F?y _SinhMy
M? CoshM /4] 2(M?+($-F?)| _ [p-F2 gipp™
Sinyg[—— 4
4
for the case of heat source and (18)

. 2 )
! :( 48 Ej(l CoshMy )+ ARy Sinhy¢+ F y _SinhMy 19)

2 CoshM/4) 2M?Z—(¢+F?)| _ [54F2 g™
Sinh 2 4
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By substituting these velocity fields in equation (17), we get the temperature field for both the cases of heat source
and heat sink as,

_ Ry Sin ¢—F2y

2 2
Sin $-F
4

. [ 2
QZR_TSmh( p+F°)y 1)

2 2
sinh,|?* F
4

If the electrical conductivity is negligible i.e. E = 0, then the velocity field for both the cases reduces to

0 (20)

,_ 48|  CoshMy | AR; Sinyg—F2y  SinhMy 2
a2l 2 2 -
M CoshM | 2(M?+¢-F?) Si $—F? sinh ™M
4 In 4
4
U= 48 1- CoshMy N ARg Sinh\/¢+ F2y_SinhMy 23)

M% coshM | 2M*—(@+F?)|  [g+F% sinp™M

The temperature equation remains same as given by the above equations (20) and (21). When the parameters
¢ = E =Br =F =0, velocity and temperature fields reduces to

48 ( CoshMy j 21 RT( SinhMy J

u= 1- + -— (24)
M 2 CoshM /4 M ? 4SinhM /4

0=2R;y (25)

In the absence of applied magnetic field, electrical conductivity and internal heat source or sink coefficient the
expression of velocity is,

R, A 1,
u= 24 || = - 26
( A j(m yj (26)

and the temperature equation is same as given in equation (25).

In the case of asymmetric heating, when buoyancy forces are dominating i.e.,
when A — + 00, equations (18) and (19) gives,

B 1 Sinyg—F*y _ SinhMy
2(M? +¢—F?)| sinJg—F2/4 SiNhM/4

@7)

SN
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u_ 1 Sinhy/g+F?y  SinhMy 8)
A 2M*—($+F?){ sinhy/g+F2/4 SinhM/4

Similarly equations (24) and (26) becomes,
u_ 2 y— SinhMy (29)
A M? 4SinhM / 4
u_ y(1 2
Rl A I 30
A 3 (16 y j 50)

which is Batchelor’s velocity profile for free convection.

Solutions of equations (14) and (17) for viscous fluid in the absence of applied magnetic field, electrical
conductivity, heat source or sink coefficient and buoyancy force leads to the Hagen-Poiseuille velocity profile

1
u=24| ——y? 31
[16 y] (31)
0=-192 Bry* +2RTy+% (32)

If buoyancy forces are not considered, then A =0 and viscous term is dominating i.e. Br #0 a purely forced
convection occurs. In this case the solutions of velocity and temperature field becomes,

J :(4_82_ Ej{l— CoshMy ] 33)
M CoshM /4
for both the cases of heat source or heat sink.
6 = C,Cosy/¢— F2y +C,Siny/¢— F2y +1,Cosh2My +I,CoshMy + (34)
where, | = —Br(M 262 _gBE ¢ 23024j CSShZMy .
M (UM“ +9p—F“)
’ =_Br[96E ~ 46028] SoshMy - = - 3304Br2
M%) (M°+¢-F%) M= (¢-F%)
1 M M R
_E2 2 4 _E2
ol ) s 7
for the case of heat source and
0 = C,Coshy/¢ + F? y+ CZSinh\/¢ +F? y +1,Cosh2My +1,CoshMy + 15 (35)
where, | = —BI’(M 2E2 _96E + 23024] 5 1 5 5
M* J(4M“ —(¢+ F“))Cosh“P;
|2 _ _pr| 96E — 4608 1 ; I3 _ 2304Br
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1 R
C, =————(1,CoshP, +1,CoshP, +1,); C,=— 1 —
. CoshP4(l v 2 +le) ? 2SinhP,

for the case of heat sink.
1. SOLUTIONS

Equation (14) is nonlinear because of viscous and Ohmic dissipations and it is difficult to find the closed form
solution. Thus perturbation series method is employed by defining the dimensionless parameter

g:Brk:RePrﬁgD (36)

p

as the perturbation parameter. Then the temperature field is obtained using equation (17). The solution of velocity
field can be expressed by the perturbation expansion

u(y)=u(y)+e u(y)+e’u, (y)+ AAA =3 e u,(y) (37)
n=0
The second and higher order terms of & give a correction to U, 6, accounting for the viscous and Ohmic

dissipation effects. Substituting equation (2) in equation (14) to (16) and equating the coefficients of like powers of
& on both sides, one obtains the boundary value problem for N =0 as

Isothermal-Isothermal (T, — T, )walls

d4 d?
0 —(MZmg-F2) =2 £ M2 (g~ F2)uy £ M (4~ F?)E mds(p- F?) (38)
dy4 dy2
for the cases of heat source or heat sink.
u, =0 at y:J_r1 (39)
4
2
Y _ 4Bt mee o oyt
dy 2 4
2
Y _ g Rt me o y=t (40)
dy 4

Equation (3) is ordinary linear differential equation and its exact solutions can be found. The solutions of equation
(3) are same as we obtain in the case of Br = 0. The solution of equation (3) using equations (4) and (5) are

Ug = C,CoshMy + C,SinhMy + C5Cos/¢— F2 y +C,Sinyg— F2 y—E +% (41)

for the case of heat source and

Uy = C,CoshMy + C,SinhMy + C5Coshy/¢ — F2 y + C,Sinhy/¢— F2 y— E +|\‘/‘|—82 (42)

for the case of heat sink. The differential equation for N = 1 and its boundary conditions become
4
d”u; _

d2U du 2 2
2 2 1 2 2 0 2

dy
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for the cases of heat source and sink.

u, =0 at y = i% (44)
ddzyuZl =0 at y= i% (45)
The solutions of equation (8) and (9) by applying the conditions given in equations (9) and (10) are,
Uy = C5CoshMy + CgSinhMy + C7COS\/¢—7y + CSSin\/ﬁy +1,Cosh2My
+1,C082\/¢— F2y + 13Sinh2My +1,5in2y/¢ — F2y — I;SinhMyCosy/ — F 2y
+ I5CoshMySiny /¢ — F? y— I7C05hMyCos\/¢—7y + IgSinhMySin4/¢ — F 2 y
+ lgySinhMy +1,, yCoshMy — IllySin\/ﬁy +1,yCos\g—F2y —lq
for the case of heat source and (46)
U, = CsCoshMy + C4SinhMy + CﬁoshWy +CgSinhyg+F2y +
1,Cosh2My +1,Sinh2My + 1;Cosh2y/g + F 2y + 1,Sinh2y/ + F2y +
I6SINN(M — g+ F2)y +IgCosh(M /g + F2)y +1,Sinh(M +y/g+ F2)y +
lgCosh(M + W)y +1gyCoshMy + ;o ySinhMy +1;,yCoshy/¢ + F 2 y
1y, ySinhyg+ F2y + 15
(47)

for the case of heat sink.

Evaluation of exact solutions for N =2 becomes complicated and hence neglecting the terms of N =2 and
onwards, the solution of equation (14) is

U=u,+é&u,. (48)

The dimensionless temperature field is obtained from the equation (17) by substituting the solutions of U, and U, in
equation (13) for both the cases of heat source or sink and is given by
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M2 +$—F2)(Cy +11,y)C08y/p—F2y+ (M2 +¢—F2)(C, +&Cq — ely1y)SinyJp— F 2y —
3eM 2 (1,Cosh2My + I5Sinh2My) + e(M? + 4(¢ — F2))(1,Cos2v/¢ — F2y +1,Sin2\/¢ — F2y)

—e(ls (¢ — F2) +21gM /¢ — F2)(SinhMyCos/¢ — F2y + (ls (4 — F2) = 21sM /g — F 2)

1
5 CoshMySiny/g— F2y — (1, (6 — F2) + 21gM /¢ — F 2 )CoshMyCosy/g— F2y + (I (4 — F2)
~21,M \J¢ — F?)SinhMySiny/g — F2y — 2M (IgSinhMy + o CoshMy) — 2&+/¢ — F2
(I;,C0Jg— F2y +1,,5inyg — F2y) — el5M 2
(49)
(M2 —(4+ F2))(Cy + £C; + £l y)Coshf + F2y + (M2 — (6~ F2))(Cy + £Cg + £hpY)
Sinhyg+ F2y —3eM 2 (1,Cosh2My + I,Sinh2My) — (M2 — 4(¢ + F2))(I,Cosh2+/ + F 2y
9:% 11,5inh2yg + F2y) + £((6+ F2) — 2M /g + F2)(1sSinh(M — /¢ — F2)y + 1,Cosh(M —

JO+F2)y+e((+F2)+2M g+ F2)(1;SiNh(M ++/¢+ F2)y +1gCosh(M ++/¢+ F2y)
+£2M (lgSinhMy + |;,CoshMy) + 2/¢ + F 2 (I Sinhy/¢ + F2y + ;,Coshy/¢ + F2 y) — ghsM 2

(50)
Isoflux-isothermal (g, —T,) walls
The non-dimensional quantities of thermal boundary conditions at the channel walls are,
dT L
q, =-K— at Y =——
dy 2
L

The dimensionless form of equation (16) can be obtained by using the equation (9) with AT = qlD/ K to give

dé 1
—=-1 at y=—=
dy 4
1
0= Ry at y=— (52)
4
where R, = (T, —T,)/ AT is the thermal ratio parameter for the isoflux-isothermal case. Other than the

no-slip conditions at the channel walls, two more boundary conditions in terms of U are needed to solve the
equation (6). These are the conditions given by equation (17).

Differentiating equation (2) with respect to Y with dP/dX = A gives
dU 0.8, dU  pgdT _

=0 53
dy?® u dy v dy 3
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Dimensionless form of above equation can be evaluated by using the equation (9),

du “AZQH do

- +4A—=0 54
dy’ dy ~ dy 4
Evaluating the equation (19) at the left wall (y =—1/4) yields
3
d_l;_Mzﬁz/l at y:_l (55)
dy dy 4

The other boundary condition at the right wall can be shown to be the same as that given for the isothermal-
isothermal case with R; replaced by th such that
d?u R4
> =—48+—2—+M’E a y=-— (56)
dy 2 4

The solutions of velocity field and temperature field can be solved from equations (3), (8), (9) and (19) by using the
boundary conditions (4), (5), (10) and (11).

Isothermal-isoflux (T, —0,) walls
The non-dimensional quantities of thermal boundary conditions at the channel walls are,

dT Y
=—K— a Y=—
fe dy 2
Y
T=T, aa  Y=—o ®7)
2
The dimensionless form of above equation can be obtained by using the equation (9) with AT = a, D /K to give
déo 1
—=-1 at y==
dy 4
1
0=R, o y=-y (58)

where R,, = (T, —T;)/ AT is the thermal ratio parameter for the isothermal-isoflux case. In this case also, the
dimensionless form boundary conditions are solved similar to the previous section of isoflux-isothermal walls.

d®u du 1

—3—M2—=/1 at y=— (59)

dy dy 4
The other boundary condition at the right wall can be shown to be the same as that given for the isothermal-
isothermal case with R; replaced by Ry, such that

2 AR
d2[1j= 48+ M2E (60)
dy- \ 4 2

The solutions of velocity field and temperature field can be obtained from these conditions substituting in equations
(3), (8), (9) and (16) for the cases of heat source and heat sink up to O (81 )
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IV. RESULTS AND DISCUSSION

The problem of laminar magneto convection flow in a vertical channel in the presence of heat source or heat sink
and in the presence of thermal radiation is presented graphically and the results are discussed in this section.

Figures 2 to 5 display the effect of velocity and temperature fields for different values of A and&. When A is
positive, £ is also positive and the flow is upward and the one other hand the flow is downward when A and & are
negative. The effect of 4 and & on temperature is not sensible. It is also observed that the effect of 4 and& on U
and @ remains the same for open and short circuits.

Figures 6,7,8 and 9 presents velocity and temperature for various values of Hartmann number M for 4 = £500.

It shows that the effect of magnetic field on the fluid flow in the channel is to suppress the flow. For A is positive

results in reverse flow near the left wall and negative values of A produces flow reversal at the right wall.
Application of a transverse magnetic field to an electrically conducting fluid gives rise to the Lorentz force, which
acts in the direction opposite to that of the fluid causing it to slow down. This drag-like force increases as the
strength of the magnetic field (represented by Hartmann number M ) increases producing further reductions in the
fluid velocity. For the buoyancy aiding flow case (where A is positive) increasing the Hartmann number reduces
the fluid adjacent to the cold left wall causing a flow reversal condition there. This reversed flow phenomenon
increases as the strength of the magnetic field increases. For the buoyancy opposing flow case (where A is
negative) the same phenomenon of reversed flow occurs but close to the hot right wall.

Figure 10 illustrates the influence of heat source coefficient ¢ on the velocity profile. It is observed that as ¢

increases velocity and the magnitude is large for E = —1compareto E =1  Plots of Uand € are shown in
Figures 11 and 12 for different values of Radiation parameter F. Here also as the radiation parameter F increases, the
flow is enhanced at the right hot wall whereas flow reversal is observed at the left cool wall. The result is a similar
in the case of temperature profile as well. It is seen that the radiation parameter F increases velocity linearly for
small values of & whereas flow reversal is observed for large values of ¢ .

V. CONCLUSION

The problem of magneto convection flow in an infinite vertical channel with heat source, sink and thermal
radiation in the presence of viscous dissipation is discussed. Three different combinations of thermal left-right wall
conditions are presented. Analytical solution for the flow and temperature fields with reference to three different
special cases are obtained. graphical representations of all the results are presented for different parameters
governing the flow and heat transfer. It is observed that the magneto convection parameter increases the velocity and
temperature fields and also the additional radiation parameter positively effects in increasing the velocity and
temperature fields.
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Fig.2: Plots of u versus y in the case of asymmetric heating for different values of A
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2=100,e =0.1: E=0,-1,1
[2=-100,e =-0.1: E=0,-1,1
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Fig.3: Plots of u versus y in the case of asymmetric heating for different values of A and ¢
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Fig.4: Plots of u versus y in the case of asymmetric heating for different values of A and ¢
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Fig.5: Plots of 0 versus y in the case of asymmetric heating for different values of A and &
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Fig.7: Plots of u versus y in the case of asymmetric heating for different values of Hartman number M
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Fig.8: Plots of 6 versus y in the case of asymmetric heating for different values of Hartmann number M
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Fig.9: Plots of u versus y in the case of symmetric heating for different values of Hartmann number M
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Fig.10: Plots of u versus y in the case of asymmetric heating for different values of heat generation coefficient ¢
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Fig.11: Plots of u versus y in the case of asymmetric heating for different values of radiation parameter F
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Fig.12: Plots of 6 versus y in the case of asymmetric heating for different values of radiation parameter F

REFERENCES

1.

2.

10.

Volume 16, No 3, 2025

A. Barletta, M. Celli, "Mixed Convection MHD flow in a vertical channel: Effects of Joule heating and
viscous dissipation”, International Journal of Heat and Mass Transfer, 2008, 51,pp. 6110-6117.

J.C Umavathi, B. Patil Mallikarjun, S. Narasimha Murthy, "On Laminar Magneto convection flow in a
vertical channel in the presence of Heat generation and Heat absorption”, Journal of Heat Transfer,
Transactions of ASME, April 2013, Vol. 135, 042503: pp.1-8.

J.C Umavathi, I. C Liu," Magneto convection in a vertical channel with heat source or sink™, Meccanica,
April 2013, 48:pp. 2221-2232.

Patil Mallikarjun B, "Convective Magneto hydrodynamic flow and heat transfer in a vertical channel”,
International Journal of Mathematical Archieve-4(4),April 2013, pp.249-261.

M. Abd-El Aziz, "Thermal radiation effects on magneto hydrodynamic mixed convection flow of a micro
polar fluid past a continuously moving semi- infinite plate for high temperature differences”, Acta
Meccanica, 2006, 187, pp.113-127.

Ali J Chamka, "On laminar hydro magnetic mixed convection flow in a vertical channel with symmetric
and asymmetric wall heating conditions”, International Journal of Heat and Mass Transfer ,2002,45,pp.
2509-2525.

J. C Umavathi, M. S Malashetty," Magneto hydrodynamic mixed convection in a vertical channe"l,
International journal of Non-Linear Mechanics, 2005, 40, pp.91-101.

A. Barletta, S. Lazzari, E. Magyari, I. Pop, "Mixed convection with heating effects in a vertical porous
annulus with a radially varying magnetic field", International Journal of Heat and Mass Transfer, 2008,
51, pp.5777-5784.

Ali J Chamka, "MHD flow of a uniformly stretched vertical permeable surface in the presence of heat
generation /absorption and a chemical reaction”, Int. Comm. Heat Mass Transfer, 2003,Vol.30, No.3,
pp.413-422.

J. P Garandet, T. Alboussiere, R. Moreau," Bouyancy driven convection in a rectangular enclosure with a
transverse magnetic field", International journal of Heat and Mass Transfer, 1992,Vol.35, No.4, pp.741-
748.

38 https://aaseresearch.com/



